Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2011, Issue 3, Pages 56–63 (Mi vspui46)  

This article is cited in 1 scientific paper (total in 1 paper)

Applied mathematics

Mathematic modeling of nonlinear deformation elastomeric layer

V. M. Mal’kova, S. A. Kabritsa, S. E. Mansurovab

a St. Petersburg State University, Faculty of Applied Mathematics and Control Processes
b Saint-Petersburg State Mining Institute
Full-text PDF (540 kB) Citations (1)
References:
Abstract: Nonlinear theory of an elastomeric layer for Saint-Venant–Kirchhoff material is constructed. Creation of such theory essentially simplifies the solution of nonlinear boundary problems of a layer and multilayered structures in comparison with those of the equations of the three-dimensional nonlinear theory of elasticity. It is necessary to solve only one equation of the second order for one required function under the theory of a layer. Numerous calculations for a layer of the ring form on the equations of the nonlinear theory of a layer and on the equations of the nonlinear theory of elasticity have been executed. These calculations enabled to establish a number of important laws. The rigidity characteristic of a layer at compression is essentially nonlinear already at enough small compression of 3% order. Limits of applicability of the material model considered depending on a degree of compression of a layer are established. These limits are approximately equal 5–10%. The equations of the layer theory are applicable at relative thickness $h/R<0.2$. The equations of the linear theory of a layer can be used only at relative compression of order 0.005 and less.
Keywords: nonlinear problems elasticity, nonlinear theory of elastomeric layer, material Saint-Venant–Kirchhoff, semi-linear material.

Accepted: March 10, 2011
Document Type: Article
UDC: 539.3
Language: Russian
Citation: V. M. Mal’kov, S. A. Kabrits, S. E. Mansurova, “Mathematic modeling of nonlinear deformation elastomeric layer”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 3, 56–63
Citation in format AMSBIB
\Bibitem{MalKabMan11}
\by V.~M.~Mal’kov, S.~A.~Kabrits, S.~E.~Mansurova
\paper Mathematic modeling of nonlinear deformation elastomeric layer
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2011
\issue 3
\pages 56--63
\mathnet{http://mi.mathnet.ru/vspui46}
Linking options:
  • https://www.mathnet.ru/eng/vspui46
  • https://www.mathnet.ru/eng/vspui/y2011/i3/p56
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Âåñòíèê Ñàíêò-Ïåòåðáóðãñêîãî óíèâåðñèòåòà. Ñåðèÿ 10. Ïðèêëàäíàÿ ìàòåìàòèêà. Èíôîðìàòèêà. Ïðîöåññû óïðàâëåíèÿ
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :78
    References:39
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024