Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2020, Volume 16, Issue 2, Pages 129–143
DOI: https://doi.org/10.21638/11701/spbu10.2020.205
(Mi vspui445)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied mathematics

Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star

A. P. Zhabkoa, K. B. Nurtazinab, V. V. Provotorovc

a St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
b N. Gumilyov Eurasian National University, 2, ul. Satpaeva, Nur-Sultan, 010008, Republic Kazakhstan
c Voronezh State University, 1, Universitetskaya pl., Voronezh, 394006, Russian Federation
Full-text PDF (579 kB) Citations (1)
References:
Abstract: In the space of piecewise smooth functions on a star graph, the question of the uniqueness of the recovery of the differential operator of a boundary value problem from its spectral characteristics is analyzed. The uniqueness of the recovery of the coefficient in a differential expression and the constant in the boundary conditions of a boundary value problem from spectral data is considered — a set of eigenvalues and a set of norms of the operator's eigenfunctions. The operator of the boundary value problem has a singularity generated by the structure of the graph: differential expression is defined on the interior parts of all the edges of the graph, and in the interior node of the graph, where the differential expression loses its meaning, there is a generalized condition of Kirchhoff — the condition of agreement (the condition of conjugating). A spectral approach is used, which is based on the spectral properties of the elliptical operator: the analyticity of Green's function of the boundary value problem on the spectral parameter, spectral completeness and the basis property of the set of its eigenfunctions in the space of square integrable function. The results are the basis for solving inverse problems for evolutionary differential systems of parabolic and hyperbolic types with distributed parameters on the network (graph), the elliptical part of which contains coefficients to be determined. In problems of an applied nature, these are, first of all, parameters that characterize the properties of the transfer of the solid environment and describe the elastic properties of the process of deformation of the environment. The approach mentioned above can also be applied to problems whose space variable is vector-like and varies in a network-like domain.
Keywords: graph, differential operator, spectral characteristics, inverse spectral problem, uniqueness solution.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP05136197
This work was financially supported by the Ministry of Education and Science of the Republic Kazakhstan (project N AP05136197).
Received: January 1, 2020
Accepted: May 28, 2020
Document Type: Article
UDC: 517.956.47
MSC: 74G55
Language: English
Citation: A. P. Zhabko, K. B. Nurtazina, V. V. Provotorov, “Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:2 (2020), 129–143
Citation in format AMSBIB
\Bibitem{ZhaNurPro20}
\by A.~P.~Zhabko, K.~B.~Nurtazina, V.~V.~Provotorov
\paper Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2020
\vol 16
\issue 2
\pages 129--143
\mathnet{http://mi.mathnet.ru/vspui445}
\crossref{https://doi.org/10.21638/11701/spbu10.2020.205}
Linking options:
  • https://www.mathnet.ru/eng/vspui445
  • https://www.mathnet.ru/eng/vspui/v16/i2/p129
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :16
    References:17
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024