Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2020, Volume 16, Issue 2, Pages 88–99
DOI: https://doi.org/10.21638/11701/spbu10.2020.201
(Mi vspui441)
 

This article is cited in 2 scientific papers (total in 2 papers)

Applied mathematics

Permanence conditions for models of population dynamics with switches and delay

A. Yu. Aleksandrov

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (500 kB) Citations (2)
References:
Abstract: Some classes of discrete and continuous generalized Volterra models of population dynamics with parameter switching and constant delay are studied. It is assumed that there are relationships of the type “symbiosis”, “compensationism” or “neutralism” between any two species in a biological community. The goal of the work is to obtain sufficient conditions for the permanence of such models. Original constructions of common Lyapunov—Krasovsky functionals are proposed for families of subsystems corresponding to the switched systems under consideration. Using the constructed functionals, conditions are derived that guarantee permanence for any admissible switching laws and any constant nonnegative delay. These conditions are constructive and are formulated in terms of the existence of a positive solution for an auxiliary system of linear algebraic inequalities. It should be noted that, in the proved theorems, the persistence of the systems is ensured by the positive coefficients of natural growth and the beneficial effect of populations on each other, whereas the ultimate boundedness of species numbers is provided by the intraspecific competition. An example is presented demonstrating the effectiveness of the developed approaches.
Keywords: population dynamics, permanence, ultimate boundedness, switches, delay, Lyapunov—Krasovskii functional.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00146_a
Received: April 1, 2020
Accepted: May 28, 2020
Document Type: Article
UDC: 517.929
MSC: 34K60
Language: Russian
Citation: A. Yu. Aleksandrov, “Permanence conditions for models of population dynamics with switches and delay”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:2 (2020), 88–99
Citation in format AMSBIB
\Bibitem{Ale20}
\by A.~Yu.~Aleksandrov
\paper Permanence conditions for models of population dynamics with switches and delay
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2020
\vol 16
\issue 2
\pages 88--99
\mathnet{http://mi.mathnet.ru/vspui441}
\crossref{https://doi.org/10.21638/11701/spbu10.2020.201}
Linking options:
  • https://www.mathnet.ru/eng/vspui441
  • https://www.mathnet.ru/eng/vspui/v16/i2/p88
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024