Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2020, Volume 16, Issue 1, Pages 73–84
DOI: https://doi.org/10.21638/11701/spbu10.2020.107
(Mi vspui440)
 

This article is cited in 5 scientific papers (total in 5 papers)

Control processes

Optimization of dynamics of trajectory bundles using smooth and nonsmooth functionals. Part 1

D. A. Ovsyannikova, M. A. Mizintsevaa, M. Yu. Balabanova, A. P. Durkinb, N. S. Edamenkoa, E. D. Kotinaa, A. D. Ovsyannikova

a St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
b Institute for Nuclear Research of the Russian Academy of Science, 7a, pr. 60-letia Oktiabria, Moscow, 117312, Russian Federation
Full-text PDF (342 kB) Citations (5)
References:
Abstract: Many different works are devoted to the problems of control and optimization in dynamic systems. Interest in these tasks does not decrease with time. New challenges arise in the development of technological processes in various fields of science and technology, in particular, in the design and creation of modern electrophysical equipment. In this paper, the problem of optimization and control of trajectory beams is considered. The problem of joint optimization of the program motion and the beam of perturbed motions using a combination of smooth and nonsmooth functionals is investigated. The first part deals with the mathematical formulation of the given representation of the variation of investigated functional and provides optimality conditions in the form of a maximum principle. In the second part, the problem of optimization of dynamics of charged particles in the accelerator with spatially homogeneous quadrupole focusing will be considered. Using a combination of smooth and non-smooth functions allows you to set the functionals that most accurately reflect the requirements for the dynamics of the charged particle beam in accelerators.
Keywords: optimal control, controlled dynamic system, trajectory ensemble, smooth functional, non-smooth functional, maximum principle, charged particle beam, accelerator.
Received: March 2, 2019
Accepted: February 13, 2020
Document Type: Article
UDC: 517.977
MSC: 49J15
Language: Russian
Citation: D. A. Ovsyannikov, M. A. Mizintseva, M. Yu. Balabanov, A. P. Durkin, N. S. Edamenko, E. D. Kotina, A. D. Ovsyannikov, “Optimization of dynamics of trajectory bundles using smooth and nonsmooth functionals. Part 1”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:1 (2020), 73–84
Citation in format AMSBIB
\Bibitem{OvsMizBal20}
\by D.~A.~Ovsyannikov, M.~A.~Mizintseva, M.~Yu.~Balabanov, A.~P.~Durkin, N.~S.~Edamenko, E.~D.~Kotina, A.~D.~Ovsyannikov
\paper Optimization of dynamics of trajectory bundles using smooth and nonsmooth functionals. Part~1
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2020
\vol 16
\issue 1
\pages 73--84
\mathnet{http://mi.mathnet.ru/vspui440}
\crossref{https://doi.org/10.21638/11701/spbu10.2020.107}
Linking options:
  • https://www.mathnet.ru/eng/vspui440
  • https://www.mathnet.ru/eng/vspui/v16/i1/p73
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024