Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2019, Volume 15, Issue 4, Pages 457–471
DOI: https://doi.org/10.21638/11701/spbu10.2019.404
(Mi vspui421)
 

This article is cited in 15 scientific papers (total in 15 papers)

Applied mathematics

Stability of weak solutions of parabolic systems with distributed parameters on the graph

A. P. Zhabkoa, A. I. Shindyapinb, V. V. Provotorovc

a St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
b Eduardo Mondlane University, 1, Julius Nyerere av., 3453, Maputo, Mozambique
c Voronezh State University, 1, Universitetskaya pl., Voronezh, 394006, Russian Federation
References:
Abstract: The analysis of the behaviour of the evolutionary equation solution with unlimited time variable has been a subject of discussion in scientific circles for a long time. There are many practical reasons for this when the initial conditions of the equation are specified with a certain error: how the small changes in the initial conditions affect the behaviour of the solution for large values of the time. The paper uses the classical understanding of the stability of the solution of a differential equation or a system of equations that goes back to the works of A. M. Lyapunov: a solution is stable if it little changes under the small perturbations of the initial condition. In the work specified the stability conditions for the solution of an evolutionary parabolic system with distributed parameters on a graph describing the process of transfer of a continuous mass in a spatial network are indicated. The parabolic system is considered in the weak formulation: a weak solution of the system is a summable function that satisfies the integral form identity, which determines the variational formulation for the initial-boundary value problem. By going beyond the classical (smooth) solutions and addressing weak solutions of the problem the authors aim not only to describe more precisely the physical nature of the transfer processes (this takes on particular importance when studying the dynamics of multiphase media) but also to the path analysis processes in multidimensional network-like domains. The used approach is based on a priori estimates of the weak solution and the construction (the Fayedo—Galerkin method with a special basis — the system of eigenfunctions of the elliptic operator of a parabolic equation) of a weakly compact family of approximate solutions in the selected state space. The obtained results underlie the analysis of optimal control problems for differential systems with distributed parameters on a graph, which have interesting analogies with multiphase problems of multidimensional hydrodynamics.
Keywords: evolutionary system of parabolic type, distributed parameters on the graph, a weak solution, stability of a weak solutions.
Received: August 15, 2019
Accepted: November 7, 2019
Document Type: Article
UDC: 517.929.4
MSC: 74J55
Language: English
Citation: A. P. Zhabko, A. I. Shindyapin, V. V. Provotorov, “Stability of weak solutions of parabolic systems with distributed parameters on the graph”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:4 (2019), 457–471
Citation in format AMSBIB
\Bibitem{ZhaShiPro19}
\by A.~P.~Zhabko, A.~I.~Shindyapin, V.~V.~Provotorov
\paper Stability of weak solutions of parabolic systems with distributed parameters on the graph
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2019
\vol 15
\issue 4
\pages 457--471
\mathnet{http://mi.mathnet.ru/vspui421}
\crossref{https://doi.org/10.21638/11701/spbu10.2019.404}
Linking options:
  • https://www.mathnet.ru/eng/vspui421
  • https://www.mathnet.ru/eng/vspui/v15/i4/p457
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:195
    Full-text PDF :27
    References:25
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024