Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2019, Volume 15, Issue 4, Pages 442–456
DOI: https://doi.org/10.21638/11701/spbu10.2019.403
(Mi vspui420)
 

Applied mathematics

Lyapunov's first method: estimates of characteristic numbers of functional matrices

V. S. Ermolin, T. V. Vlasova

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
References:
Abstract: This paper contains the development of theoretical fundamentals of the first method of Lyapunov. We analyze the relations between characteristic numbers of functional matrices, their rows, and columns. We consider Lyapunov's results obtained to evaluate and calculate characteristic numbers for products of scalar functions and prove a theorem on the generalization of these results to the products of matrices. This theorem states necessary and sufficient conditions for the existence of rigorous estimates for characteristic numbers of matrix products. Also, we prove a theorem that establishes a relationship between the characteristic number of a square non-singular matrix and the characteristic number of its inverse matrix, and the determinant. The stated relations and properties of the characteristic numbers of square matrices we reformulate in terms of the Lyapunov exponents. Examples of matrices illustrate the proved theorems.
Keywords: Lyapunov's first method, stability theory, characteristic numbers, the Lyapunov exponent, functional matrices.
Received: February 1, 2019
Accepted: November 7, 2019
Document Type: Article
UDC: 517.926
MSC: 93D05, 34D08, 34A30
Language: English
Citation: V. S. Ermolin, T. V. Vlasova, “Lyapunov's first method: estimates of characteristic numbers of functional matrices”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:4 (2019), 442–456
Citation in format AMSBIB
\Bibitem{ErmVla19}
\by V.~S.~Ermolin, T.~V.~Vlasova
\paper Lyapunov's first method: estimates of characteristic numbers of functional matrices
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2019
\vol 15
\issue 4
\pages 442--456
\mathnet{http://mi.mathnet.ru/vspui420}
\crossref{https://doi.org/10.21638/11701/spbu10.2019.403}
Linking options:
  • https://www.mathnet.ru/eng/vspui420
  • https://www.mathnet.ru/eng/vspui/v15/i4/p442
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:102
    Full-text PDF :8
    References:20
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024