Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2019, Volume 15, Issue 3, Pages 323–336
DOI: https://doi.org/10.21638/11701/spbu10.2019.303
(Mi vspui411)
 

This article is cited in 20 scientific papers (total in 20 papers)

Applied mathematics

About one approach to solving the inverse problem for parabolic equation

A. P. Zhabkoa, K. B. Nurtazinab, V. V. Provotorovc

a St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
b L. N. Gumilyov Eurasian National University, 2, ul. Satpaeva, Nur-Sultan, 010008, Republic Kazakhstan
c Voronezh State University, 1, Universitetskaya pl., Voronezh, 394006, Russian Federation
References:
Abstract: Consider the problem of determining the coefficients in the differential equation of parabolic types and boundary conditions on the known sections of the solutions of the initial-boundary value problem. Used spectral approach based on spectral properties of the elliptic operator of the initial-boundary value problem and the methods of solving the inverse spectral problem of restoring the Sturm–Liouville operator on two sequences of the eigenvalues, that corresponding to two sets of boundary conditions. In the work presented sufficient conditions of determination of two sequences of the eigenvalues by two sets of boundary conditions and terms of the uniqueness of the solution of the inverse problem The paper considers the case where the initial-boundary value problem contains the specifics — the interval of change contains variable include a finite number of the points, where the differential equation is meaningless and replaced conditions agreement.
Keywords: parabolic system, inverse problem, the eigenvalues of boundary value problems, the poles of the analytical continuation of the Green's function.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan АR05136197
This work was supported from the Ministry of education and science of the Republic Kazakhstan (projekt N АR05136197).
Received: May 15, 2019
Accepted: June 6, 2019
Bibliographic databases:
Document Type: Article
UDC: 517.956.47
MSC: 74G55
Language: English
Citation: A. P. Zhabko, K. B. Nurtazina, V. V. Provotorov, “About one approach to solving the inverse problem for parabolic equation”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:3 (2019), 323–336
Citation in format AMSBIB
\Bibitem{ZhaNurPro19}
\by A.~P.~Zhabko, K.~B.~Nurtazina, V.~V.~Provotorov
\paper About one approach to solving the inverse problem for parabolic equation
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2019
\vol 15
\issue 3
\pages 323--336
\mathnet{http://mi.mathnet.ru/vspui411}
\crossref{https://doi.org/10.21638/11701/spbu10.2019.303}
\elib{https://elibrary.ru/item.asp?id=41180256}
Linking options:
  • https://www.mathnet.ru/eng/vspui411
  • https://www.mathnet.ru/eng/vspui/v15/i3/p323
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:172
    Full-text PDF :24
    References:31
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024