|
This article is cited in 1 scientific paper (total in 1 paper)
Computer science
Faulty share detection in Shamir’s secret sharing
A. Yu. Utesheva, A. V. Marovb a St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg,
199034, Russian Federation
b RAIDIX, 33 (A), nab. reki Smolenki, St. Petersburg,
199178, Russian Federation
Abstract:
For Shamir's secret key sharing algorithm,
we develop the procedure for detection of faulty shares. This
procedure consists of the error locator polynomial construction
for the data set $ \{ (x_j,y_j)\}_{j=1}^N $ with $ y $ values
generated from $ x $ ones by a polynomial interpolant of a degree
$ n < N-1 $ with possible occurrence of some errors. The error
locator polynomial is sought out in the form of an appropriate
Hankel polynomial
$$
\mathcal H_{L}(x;\{ \tau \}) := \left|
\begin{array}{lllll}
\tau_0 & \tau_1 & \tau_2 & \ldots & \tau_{L} \\
\tau_1 & \tau_2 & \tau_3 &\ldots & \tau_{L+1} \\
\vdots & \vdots & \vdots & & \vdots \\
\tau_{L-1} & \tau_{L} & \tau_{L+1} & \ldots & \tau_{2L-1} \\
1 & x & x^2 & \ldots & x^{L}
\end{array} \right| \, ,
$$
where $ \tau_{\ell} := \displaystyle \sum_{j=1}^{N} y_j \frac{x_j^{\ell}}{W^{\prime}(x_j)} $; $ \displaystyle W(x):=\prod_{j=1}^N (x- x_j) $.
Keywords:
Shamir’s secret sharing, polynomial interpolation, Hankel polynomials, error
correction.
Received: January 30, 2019 Accepted: March 15, 2019
Citation:
A. Yu. Uteshev, A. V. Marov, “Faulty share detection in Shamir’s secret sharing”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:2 (2019), 274–282
Linking options:
https://www.mathnet.ru/eng/vspui407 https://www.mathnet.ru/eng/vspui/v15/i2/p274
|
Statistics & downloads: |
Abstract page: | 174 | Full-text PDF : | 37 | References: | 30 | First page: | 5 |
|