Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2019, Volume 15, Issue 2, Pages 235–244
DOI: https://doi.org/10.21638/11701/spbu10.2019.207
(Mi vspui404)
 

This article is cited in 1 scientific paper (total in 1 paper)

Computer science

Semantic Textual Similarity on Brazilian Portuguese: An approach based on language-mixture models

A. Silvaa, A. Lozkinsb, L. R. Bertoldia, S. Rigoa, V. M. Bureb

a University of Vale do Rio dos Sinos, 950, Av. Unisinos, São Leopoldo, RS, 93020-190, Brazil
b St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (341 kB) Citations (1)
References:
Abstract: The literature describes the Semantic Textual Similarity (STS) area as a fundamental part of many Natural Language Processing (NLP) tasks. The STS approaches are dependent on the availability of lexical-semantic resources. There are several efforts to improve the lexical-semantics resources for the English language, and the state-of-art report a large amount of application for this language. Brazilian Portuguese linguistics resources, when compared with English ones, do not have the same availability regarding relation and contents, generation a loss of precision in STS tasks. Therefore, the current work presents an approach that combines Brazilian Portuguese and English lexical-semantics ontology resources to reach all potential of both language linguistic relations, to generate a language-mixture model to measure STS. We evaluated the proposed approach with a well-known and respected Brazilian Portuguese STS dataset, which brought to light some considerations about mixture models and their relations with ontology language semantics.
Keywords: Semantic Textual Similarity, natural language processing, computational linguistics, ontologies.
Received: November 18, 2018
Accepted: March 15, 2019
Bibliographic databases:
Document Type: Article
UDC: 004.912
MSC: 68T50
Language: English
Citation: A. Silva, A. Lozkins, L. R. Bertoldi, S. Rigo, V. M. Bure, “Semantic Textual Similarity on Brazilian Portuguese: An approach based on language-mixture models”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:2 (2019), 235–244
Citation in format AMSBIB
\Bibitem{SilLozBer19}
\by A.~Silva, A.~Lozkins, L.~R.~Bertoldi, S.~Rigo, V.~M.~Bure
\paper Semantic Textual Similarity on Brazilian Portuguese: An approach based on language-mixture models
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2019
\vol 15
\issue 2
\pages 235--244
\mathnet{http://mi.mathnet.ru/vspui404}
\crossref{https://doi.org/10.21638/11701/spbu10.2019.207}
\elib{https://elibrary.ru/item.asp?id=38552369}
Linking options:
  • https://www.mathnet.ru/eng/vspui404
  • https://www.mathnet.ru/eng/vspui/v15/i2/p235
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024