Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2019, Volume 15, Issue 1, Pages 93–106
DOI: https://doi.org/10.21638/11701/spbu10.2019.107
(Mi vspui392)
 

This article is cited in 4 scientific papers (total in 4 papers)

Applied mathematics

Modeling of pipe flows

V. A. Pavlovskya, A. L. Chistovb, D. M. Kuchinskya

a St. Petersburg State Marine Technical University, 3, Locmanskaya ul., St. Petersburg, 190121, Russian Federation
b St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (602 kB) Citations (4)
References:
Abstract: Lots of technical devices use flows in pipes and channels caused by pressure drop, along with one's axis, which is energy consuming and has to be estimated. For the estimation resistant coefficient, dependent on flow regime and streamlined surface roughness, is required. Turbulence $f$-model applicable for calculation for both laminar and turbulent flow and smooth and rough walls is used for investigation. The problem of incompressible viscous liquid steady flow in a smooth round pipe is considered for different Reynolds numbers. First integrals for velocity profile and turbulence measure are obtained in form of transcendental equations and solved by Newton's method for algebraic equation system. Calculated results are compared with data from alternative theoretical approaches and experiments.
Keywords: pipe flow, viscosity, $f$-model of turbulence, Reynolds number, pressure difference, differential equations, boundary conditions, velocity profile, resistance coefficient.
Funding agency Grant number
Russian Foundation for Basic Research 16-08-00890_а
The work is supported by Russian Fundamental Research (grand N 16-08-00890).
Received: May 8, 2018
Accepted: December 18, 2018
Bibliographic databases:
Document Type: Article
UDC: 551.511.61
MSC: 76F05
Language: Russian
Citation: V. A. Pavlovsky, A. L. Chistov, D. M. Kuchinsky, “Modeling of pipe flows”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:1 (2019), 93–106
Citation in format AMSBIB
\Bibitem{PavChiKuc19}
\by V.~A.~Pavlovsky, A.~L.~Chistov, D.~M.~Kuchinsky
\paper Modeling of pipe flows
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2019
\vol 15
\issue 1
\pages 93--106
\mathnet{http://mi.mathnet.ru/vspui392}
\crossref{https://doi.org/10.21638/11701/spbu10.2019.107}
\elib{https://elibrary.ru/item.asp?id=37259167}
Linking options:
  • https://www.mathnet.ru/eng/vspui392
  • https://www.mathnet.ru/eng/vspui/v15/i1/p93
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024