Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2019, Volume 15, Issue 1, Pages 76–92
DOI: https://doi.org/10.21638/11701/spbu10.2019.106
(Mi vspui391)
 

This article is cited in 3 scientific papers (total in 3 papers)

Applied mathematics

Markov moment for the agglomerative method of clustering in Euclidean space

A. V. Orekhov

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (467 kB) Citations (3)
References:
Abstract: When processing large arrays of empirical data or large-scale data, cluster analysis remains one of the primary methods of preliminary typology, which makes it necessary to obtain formal rules for calculating the number of clusters. The most common method for determining the preferred number of clusters is the visual analysis of dendrograms, but this approach is purely heuristic. The number of clusters and the end moment of the clustering algorithm depend on each other. Cluster analysis of data from $n$-dimensional Euclidean space using the “single linkage” method can consider as a discrete random process. Sequences of “minimum distances” define the trajectories of this process. The “approximation-estimating test” allows us to establish the Markov moment when the growth rate of such a sequence changes from linear to parabolic, which, in turn, may be a sign of the completion of the agglomerative clustering process. The calculation of the number of clusters is the critical problem in many cases of the automatic typology of empirical data. For example, in medicine with cytometric analysis of blood, automated analysis of texts and in other instances when the number of clusters not known in advance.
Keywords: cluster analysis, least squares method, Markov moment.
Received: February 28, 2018
Accepted: December 18, 2018
Bibliographic databases:
Document Type: Article
UDC: 519.237.8+519.216.5
MSC: 62H30
Language: Russian
Citation: A. V. Orekhov, “Markov moment for the agglomerative method of clustering in Euclidean space”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:1 (2019), 76–92
Citation in format AMSBIB
\Bibitem{Ore19}
\by A.~V.~Orekhov
\paper Markov moment for the agglomerative method of clustering in Euclidean space
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2019
\vol 15
\issue 1
\pages 76--92
\mathnet{http://mi.mathnet.ru/vspui391}
\crossref{https://doi.org/10.21638/11701/spbu10.2019.106}
\elib{https://elibrary.ru/item.asp?id=37259166}
Linking options:
  • https://www.mathnet.ru/eng/vspui391
  • https://www.mathnet.ru/eng/vspui/v15/i1/p76
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024