Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2018, Volume 14, Issue 3, Pages 200–214
DOI: https://doi.org/10.21638/11701/spbu10.2018.302
(Mi vspui370)
 

This article is cited in 3 scientific papers (total in 3 papers)

Applied mathematics

The maximum likelihood method for detecting communities in communication networks

V. V. Mazalovab, N. N. Nikitinab

a St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
b Federal Research Center “Karelian Research Center of the Russian Academy of Sciences”, 11, Pushkinskaya ul., Petrozavodsk, 185910, Russian Federation
Full-text PDF (654 kB) Citations (3)
References:
Abstract: The community detection in social and communication networks is an important problem in many applied fields: biology, sociology, social networks. This is especially true for networks that are represented by large graphs. In this paper, we propose a method for community detection based on the maximum likelihood method for the random formation of a network with given parameters of the tightness of connections within the community and between different communities. A numerical algorithm for finding the maximum of the objective function over all possible network partitions is described. The algorithm is implemented and tested on real networks of small dimension.
Keywords: network communities, detecting communities in a network, maximum likelihood method, Gibbs sampling.
Funding agency Grant number
Russian Science Foundation 17-11-01079
Received: May 30, 2018
Accepted: June 14, 2018
Bibliographic databases:
Document Type: Article
UDC: 519.178
MSC: 05C70
Language: Russian
Citation: V. V. Mazalov, N. N. Nikitina, “The maximum likelihood method for detecting communities in communication networks”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 14:3 (2018), 200–214
Citation in format AMSBIB
\Bibitem{MazNik18}
\by V.~V.~Mazalov, N.~N.~Nikitina
\paper The maximum likelihood method for detecting communities in communication networks
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2018
\vol 14
\issue 3
\pages 200--214
\mathnet{http://mi.mathnet.ru/vspui370}
\crossref{https://doi.org/10.21638/11701/spbu10.2018.302}
\elib{https://elibrary.ru/item.asp?id=35572243}
Linking options:
  • https://www.mathnet.ru/eng/vspui370
  • https://www.mathnet.ru/eng/vspui/v14/i3/p200
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:234
    Full-text PDF :79
    References:39
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024