Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2017, Volume 13, Issue 4, Pages 431–443
DOI: https://doi.org/10.21638/11701/spbu10.2017.409
(Mi vspui351)
 

This article is cited in 29 scientific papers (total in 29 papers)

Control processes

Optimal control of the linearized Navier–Stokes system in a netlike domain

V. V. Provotorova, E. N. Provotorovab

a Voronezh State University, 1, Universitetskaya square, Voronezh, 394006, Russian Federation
b Voronezh State Technical University, 14, Moskovskii pr., Voronezh, 394026, Russian Federation
References:
Abstract: This work is a natural extension of research into optimal control problems of evolution equations with distributed parameters on a geometrical graph (network) of one of the authors in the direction of increasing the dimension of a spatial variable and the functions describing the state of the study of the Navier–Stokes equations. At the same time is examined a simple case of the absence of convective effect (laminar flow of an incompressible viscous fluid) — linearized system of Navier–Stokes equations in a net-like domain. It proves unique solvability of the initial boundary value problem in the weak formulation which is based on the Faedo–Galerkin method using a special basis (the set of generalized eigenfunctions of the special spectral problem) and a priori estimates of norms solutions such as power inequalities. The proof is constructive: to construct a sequence of approximate solutions that converges weakly to the exact solution of the problem. Problems are analyzed with distributed and a start control with a final observation, widespread in applications, that provides the necessary and sufficient conditions for the existence of optimal controls in terms of the conjugate states of the respective systems. Sufficient attention is paid to the synthesis of the optimal control action, and analogues of established finite-dimensional case for Kalman results have been obtained. Although, the use of this method is demonstrated by examples of optimal control theory, this method has a highly susceptible to generalization and applicable to a wide class of linear problems. Refs 15.
Keywords: linearized Navier–Stokes system, net like domain, weak solutions, optimal control, control synthesis.
Received: October 7, 2016
Accepted: October 12, 2017
Bibliographic databases:
Document Type: Article
UDC: 517.977.56
Language: English
Citation: V. V. Provotorov, E. N. Provotorova, “Optimal control of the linearized Navier–Stokes system in a netlike domain”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 13:4 (2017), 431–443
Citation in format AMSBIB
\Bibitem{ProPro17}
\by V.~V.~Provotorov, E.~N.~Provotorova
\paper Optimal control of the linearized Navier--Stokes system in a netlike domain
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2017
\vol 13
\issue 4
\pages 431--443
\mathnet{http://mi.mathnet.ru/vspui351}
\crossref{https://doi.org/10.21638/11701/spbu10.2017.409}
\elib{https://elibrary.ru/item.asp?id=32358362}
Linking options:
  • https://www.mathnet.ru/eng/vspui351
  • https://www.mathnet.ru/eng/vspui/v13/i4/p431
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:234
    Full-text PDF :43
    References:39
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024