Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2017, Volume 13, Issue 4, Pages 384–397
DOI: https://doi.org/10.21638/11701/spbu10.2017.405
(Mi vspui347)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied mathematics

The use of tropical optimization methods in problems of project scheduling

N. K. Krivulina, S. A. Gubanovb

a St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
b St. Petersburg Office “KB Lutch”, 14A, ul. Academician Pavlov, St. Petersburg, 197376, Russian Federation
Full-text PDF (486 kB) Citations (1)
References:
Abstract: The paper is devoted to the solution of problems in project scheduling by using methods of tropical optimization. Problems are examined that are to develop an optimal schedule for a project consisting in the execution of a set of interrelated tasks under given constraints on their initiation and completion time. The optimal schedule criteria are considered, which require the maximization of the deviation of the initiation or the deviation of the completion time of tasks. Such problems arise when, for some reason (such as a lack of resources, technical constraints, security requirements, and the like), there is a need to avoid a simultaneous start or finish for all tasks in the project. The paper begins with the formulation of scheduling problems in the form of usual optimization problems. Then, definitions and results of tropical mathematics are given, which are used in the subsequent analysis and solution of tropical optimization problems. New constrained problems of tropical optimization are considered, and their solutions are obtained. The scheduling problems are solved by reducing to tropical optimization problems. To illustrate the results obtained, numerical examples are presented. Refs 15.
Keywords: tropical mathematics, idempotent semifield, tropical optimization, project management, project scheduling.
Funding agency Grant number
Russian Humanitarian Science Foundation 16-02-00059_a
Received: June 29, 2017
Accepted: October 12, 2017
Bibliographic databases:
Document Type: Article
UDC: 519.87
Language: Russian
Citation: N. K. Krivulin, S. A. Gubanov, “The use of tropical optimization methods in problems of project scheduling”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 13:4 (2017), 384–397
Citation in format AMSBIB
\Bibitem{KriGub17}
\by N.~K.~Krivulin, S.~A.~Gubanov
\paper The use of tropical optimization methods in problems of project scheduling
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2017
\vol 13
\issue 4
\pages 384--397
\mathnet{http://mi.mathnet.ru/vspui347}
\crossref{https://doi.org/10.21638/11701/spbu10.2017.405}
\elib{https://elibrary.ru/item.asp?id=32358358}
Linking options:
  • https://www.mathnet.ru/eng/vspui347
  • https://www.mathnet.ru/eng/vspui/v13/i4/p384
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :47
    References:41
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024