Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2017, Volume 13, Issue 4, Pages 372–383
DOI: https://doi.org/10.21638/11701/spbu10.2017.404
(Mi vspui346)
 

Applied mathematics

Mathematical modeling of the deformation of composite plane with interface crack for John’s harmonic material

T. O. Domanskaya, V. M. Malkov, Yu. V. Malkova

St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
References:
Abstract: The exact analytical solution of a nonlinear plane-strain problem for a bimaterial plane with an interface crack (cut) has been obtained. The plane is formed by joining of two half-planes made from different materials. Mechanical properties of half-planes are described with the model of a John's harmonic material. The application of this model has permitted using the methods of the complex functions in the nonlinear boundary value problems. As particular case, the problem is solved for the plane with a free interface crack at given constant nominal stresses at infinity. The expressions are obtained for nominal (Piola) stresses, Cauchy stresses and displacements. From the general solutions the asymptotic expansions of these functions have been constructed in vicinities of crack tips. In nonlinear problems of uniaxial extension of a plane with a free crack it is established that the formulas which give the crack disclosing and the stress intensity factors near the crack tips coincide completely with similar formulas derived from the equations of linear elasticity. The nominal stresses have root singularity at the tips of a crack; the Cauchy stresses have no singularity. Refs 16. Figs 3. Table 1.
Keywords: bimaterial plane, plane-strain problem, method of complex functions, interface crack, John's harmonic material.
Funding agency Grant number
Russian Foundation for Basic Research 16-31-00065_мол_а
Received: May 11, 2017
Accepted: October 12, 2017
Bibliographic databases:
Document Type: Article
UDC: 539, 517.5
Language: Russian
Citation: T. O. Domanskaya, V. M. Malkov, Yu. V. Malkova, “Mathematical modeling of the deformation of composite plane with interface crack for John’s harmonic material”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 13:4 (2017), 372–383
Citation in format AMSBIB
\Bibitem{DomMalMal17}
\by T.~O.~Domanskaya, V.~M.~Malkov, Yu.~V.~Malkova
\paper Mathematical modeling of the deformation of composite plane with interface crack for John’s harmonic material
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2017
\vol 13
\issue 4
\pages 372--383
\mathnet{http://mi.mathnet.ru/vspui346}
\crossref{https://doi.org/10.21638/11701/spbu10.2017.404}
\elib{https://elibrary.ru/item.asp?id=32358357}
Linking options:
  • https://www.mathnet.ru/eng/vspui346
  • https://www.mathnet.ru/eng/vspui/v13/i4/p372
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :24
    References:32
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024