Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2017, Volume 13, Issue 4, Pages 342–353
DOI: https://doi.org/10.21638/11701/spbu10.2017.401
(Mi vspui343)
 

This article is cited in 3 scientific papers (total in 3 papers)

Applied mathematics

Steady flows of second-grade fluids in a channel

E. S. Baranovskii, M. A. Artemov

Voronezh State University, 1, Universitetskaya pl., Voronezh, 394006, Russian Federation
Full-text PDF (396 kB) Citations (3)
References:
Abstract: In this paper, we study mathematical models describing steady flows of second-grade fluids in a plane channel. The flows are driven by constant pressure gradient. We consider various boundary conditions on the channel walls, namely, the no-slip condition, the free-slip condition, threshold slip conditions, and mixed boundary conditions. For each of the boundary value problems, we construct exact solutions, which characterize the velocity and pressure fields in the channel. Using these solutions, we show that the pressure significantly depends on the normal stress coefficient $\alpha$, especially in those subdomains, where the change of flow velocity is large (in the transverse direction of the channel). At the same time, the velocity field is independent of $\alpha$, and therefore coincides with the velocity field that occurs in the case of a Newtonian fluid (when $\alpha= 0$). Moreover, we establish that the key point in a description of stick-slip flows is value of $\xi h$, where $\xi$ is module of the gradient pressure, $h$ is the half-channel height. If $\xi h$ exceeds some threshold value, then the slip regime holds at solid surfaces, otherwise the fluid adheres to the channel walls. If it is assumed that the free-slip condition (Navier's condition) is provided on one part of the boundary, while on the other one a stick-slip condition holds, then for the slip regime the corresponding threshold value is reduced to a certain extent, but not by more than half. Refs 15.
Keywords: non-Newtonian fluids, second-grade fluids, the Poiseuille flow, slip boundary conditions, boundary value problems, exact solutions.
Funding agency Grant number
Russian Foundation for Basic Research 16-31-00182_мол_а
Received: March 13, 2017
Accepted: October 12, 2017
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: E. S. Baranovskii, M. A. Artemov, “Steady flows of second-grade fluids in a channel”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 13:4 (2017), 342–353
Citation in format AMSBIB
\Bibitem{BarArt17}
\by E.~S.~Baranovskii, M.~A.~Artemov
\paper Steady flows of second-grade fluids in a channel
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2017
\vol 13
\issue 4
\pages 342--353
\mathnet{http://mi.mathnet.ru/vspui343}
\crossref{https://doi.org/10.21638/11701/spbu10.2017.401}
\elib{https://elibrary.ru/item.asp?id=32358354}
Linking options:
  • https://www.mathnet.ru/eng/vspui343
  • https://www.mathnet.ru/eng/vspui/v13/i4/p342
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:325
    Full-text PDF :35
    References:35
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024