Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2017, Volume 13, Issue 2, Pages 147–167
DOI: https://doi.org/10.21638/11701/spbu10.2017.203
(Mi vspui329)
 

This article is cited in 1 scientific paper (total in 1 paper)

Applied mathematics

Modeling of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point $L_1$

D. V. Shymanchuk

St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (807 kB) Citations (1)
References:
Abstract: This paper considers the motion of a celestial body (as a rigid body) within the restricted three-body problem of the Sun–Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point $L_1$ are investigated. The translational orbital motion of a celestial body is described using Hill's equations of a circular restricted three-body problem of the Sun–Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. As an important result, we investigate the problems of celestial body motion stability in relative equilibrium positions and stabilization of a celestial body motion with proposed control laws in collinear libration point $L_1$. To study stabilization problems, Lyapunov function is constructed in the form of the sum of the kinetic energy of a celestial body and special “kinematics” function of the Rodriguez–Hamiltonian parameters. The numerical modeling of the controlled rotational motion of a celestial body at libration point $L_1$ is carried out. The numerical characteristics of the control parameters and rotational motion of the celestial body are given. Results of numerical integration are presented graphically. Refs 14. Figs 10.
Keywords: restricted three body problem, Hill's problem, libration point, rigid body, coupled attitude-orbit motion, control, stabilization.
Funding agency Grant number
Saint Petersburg State University 9.37.345.2015
Received: March 7, 2017
Accepted: April 11, 2017
Bibliographic databases:
Document Type: Article
UDC: 519.71+521.1
Language: Russian
Citation: D. V. Shymanchuk, “Modeling of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point $L_1$”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 13:2 (2017), 147–167
Citation in format AMSBIB
\Bibitem{Shy17}
\by D.~V.~Shymanchuk
\paper Modeling of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point~$L_1$
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2017
\vol 13
\issue 2
\pages 147--167
\mathnet{http://mi.mathnet.ru/vspui329}
\crossref{https://doi.org/10.21638/11701/spbu10.2017.203}
\elib{https://elibrary.ru/item.asp?id=29816738}
Linking options:
  • https://www.mathnet.ru/eng/vspui329
  • https://www.mathnet.ru/eng/vspui/v13/i2/p147
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :109
    References:29
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024