Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2017, Volume 13, Issue 1, Pages 102–112
DOI: https://doi.org/10.21638/11701/spbu10.2017.110
(Mi vspui325)
 

This article is cited in 2 scientific papers (total in 2 papers)

Control processes

Design of the stabilizing control of the orbital motion using the analytical representation of an invariant manifold in the vicinity of a collinear libration point

G. P. Maliavkin, V. A. Shmyrov, A. S. Shmyrov

St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (348 kB) Citations (2)
References:
Abstract: The article is devoted to the problem of stabilization of orbital motion in the vicinity of the collinear libration point $L_1$ of the Sun–Earth system. The key concept of the suggested approach is the so-called hazard function. The latter is a function of the phase variables of the Hill's approximation of the circular restricted three-body problem, which is defined as a nondegenerate solution of some partial differential equation. The hazard function can be used for the analytical representation of an invariant manifold in the vicinity of the libration point. Approximations of the hazard function of the first, second and the third order are obtained with the method of indefinite coefficients. These approximations are then used in the construction of three motion stabilizing control laws. Numerical modelling of the controlled motion is applied to compare these laws with respect to the energy consumptions. Refs 8. Figs 3. Table 1.
Keywords: restricted three-body problem, collinear libration point, invariant manifold, stabilizing control of motion.
Funding agency Grant number
Saint Petersburg State University 9.37.345.2015
Received: July 27, 2016
Accepted: January 19, 2017
Bibliographic databases:
Document Type: Article
UDC: 519.71
Language: Russian
Citation: G. P. Maliavkin, V. A. Shmyrov, A. S. Shmyrov, “Design of the stabilizing control of the orbital motion using the analytical representation of an invariant manifold in the vicinity of a collinear libration point”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 13:1 (2017), 102–112
Citation in format AMSBIB
\Bibitem{MalShmShm17}
\by G.~P.~Maliavkin, V.~A.~Shmyrov, A.~S.~Shmyrov
\paper Design of the stabilizing control of the orbital motion using the analytical representation of an invariant manifold in the vicinity of a collinear libration point
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2017
\vol 13
\issue 1
\pages 102--112
\mathnet{http://mi.mathnet.ru/vspui325}
\crossref{https://doi.org/10.21638/11701/spbu10.2017.110}
\elib{https://elibrary.ru/item.asp?id=29143347}
Linking options:
  • https://www.mathnet.ru/eng/vspui325
  • https://www.mathnet.ru/eng/vspui/v13/i1/p102
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024