Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2017, Volume 13, Issue 1, Pages 51–60
DOI: https://doi.org/10.21638/11701/spbu10.2017.105
(Mi vspui320)
 

This article is cited in 4 scientific papers (total in 4 papers)

Computer science

Characteristics based dissimilarity measure for time series

K. Yu. Staroverova, V. M. Bure

St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (303 kB) Citations (4)
References:
Abstract: It is necessary to invent dissimilarity measures which take into account the temporal nature of a time series. Such measures can be utilized for classification and clustering of time series. Great work has been conducted on this problem, but most measures use dimensionality reduction techniques. Such methods give accurate results for big data, but demonstrate a weakness now in short time series clustering. Many fields such as economics, demography, sociology, and others are presented by short time series. That is why a new method based on time series characteristics is introduced here. It is based on time series characteristics which are split into three groups: constant, dynamic and behavioural. A researcher can control the influence of the characteristics of each group as a result. Besides, we present a brief description of up-to-date dissimilarity measures from the R environment. The results of experiments on two synthetic data sets and comparison of our measure and other up-to-date methods are then presented. Refs 12. Figs 2. Table 1.
Keywords: clustering, time series similarity measure, classification.
Received: November 3, 2016
Accepted: January 19, 2017
Bibliographic databases:
Document Type: Article
UDC: 519.237.8
Language: Russian
Citation: K. Yu. Staroverova, V. M. Bure, “Characteristics based dissimilarity measure for time series”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 13:1 (2017), 51–60
Citation in format AMSBIB
\Bibitem{StaBur17}
\by K.~Yu.~Staroverova, V.~M.~Bure
\paper Characteristics based dissimilarity measure for time series
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2017
\vol 13
\issue 1
\pages 51--60
\mathnet{http://mi.mathnet.ru/vspui320}
\crossref{https://doi.org/10.21638/11701/spbu10.2017.105}
\elib{https://elibrary.ru/item.asp?id=29143342}
Linking options:
  • https://www.mathnet.ru/eng/vspui320
  • https://www.mathnet.ru/eng/vspui/v13/i1/p51
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:180
    Full-text PDF :66
    References:34
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024