Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2016, Issue 3, Pages 39–52
DOI: https://doi.org/10.21638/11701/spbu10.2016.304
(Mi vspui297)
 

This article is cited in 2 scientific papers (total in 2 papers)

Applied mathematics

Covariant description of phase space distributions

O. I. Drivotin

St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (278 kB) Citations (2)
References:
Abstract: The concept of phase space for particles moving in the 4-dimensional space time is formulated. Definition of particle distribution density as differential form is given. The degree of the distribution density form may be different in various cases. The Liouville and the Vlasov equations are written in tensor form with use of such tensor operations as the Lie dragging and the Lie derivative. The presented approach is valid in both non-relativistic and relativistic cases. It should be emphasized that this approach does not include the concepts of phase volume and distribution function. The covariant approach allows using arbitrary systems of coordinates for description of the particle distribution. In some cases, making use of special coordinates grants the possibility to construct analytical solutions. Besides, such an approach is convenient for description of degenerate distributions, for example, of the Kapchinsky–Vladimirsky distribution, which is well-known in the theory of charged particle beams. It can be also applied for description of particle distributions in curved space time. Refs 25.
Keywords: Liouville equation, Vlasov equation, phase space, phase density, particle distribution density, self-consistent distribution, degenerate distribution.
Received: February 15, 2016
Accepted: May 26, 2016
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: English
Citation: O. I. Drivotin, “Covariant description of phase space distributions”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2016, no. 3, 39–52
Citation in format AMSBIB
\Bibitem{Dri16}
\by O.~I.~Drivotin
\paper Covariant description of phase space distributions
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2016
\issue 3
\pages 39--52
\mathnet{http://mi.mathnet.ru/vspui297}
\crossref{https://doi.org/10.21638/11701/spbu10.2016.304}
\elib{https://elibrary.ru/item.asp?id=27345375}
Linking options:
  • https://www.mathnet.ru/eng/vspui297
  • https://www.mathnet.ru/eng/vspui/y2016/i3/p39
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024