Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2015, Issue 4, Pages 36–55 (Mi vspui266)  

Applied mathematics

Differential algebra based magnetic field computations and accurate fringe field maps

B. Erdélyi, M. Berz, M. Lindemann

Michigan State University, 567, Wilson Road, East Lansing, MI 48824, United States of America
References:
Abstract: For the purpose of precision studies of transfer maps of particle motion in complex magnetic fields, we develop a method for Differential Algebra based $3D$ field computation and multipole decomposition. It can be applied whenever a model of a magnet is given which consist of line wire currents, and the wires are utilized to represent both the coils and the iron parts via the so-called image current method. Such a model exists for most modern superconducting magnets and a large variety of others as well. It is stressed that it is the only practically possible way to extract the multipoles and its derivatives, and hence the transfer map of the particle motion, analytically to high order. We also study various related topics like aspects of computational complexity of the problem, Maxwellification of fields, importance of vanishing curl, etc., and its applications to very accurate computation of magnetic fields including fringe fields. Refs 19. Figs 4. Tables 6.
Keywords: Maxwell's equations, Biot–Savart law, multipoles, differential algebra.
Received: September 10, 2015
Bibliographic databases:
Document Type: Article
UDC: 519.6, 537.8
Language: English
Citation: B. Erdélyi, M. Berz, M. Lindemann, “Differential algebra based magnetic field computations and accurate fringe field maps”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2015, no. 4, 36–55
Citation in format AMSBIB
\Bibitem{ErdBerLin15}
\by B.~Erd\'elyi, M.~Berz, M.~Lindemann
\paper Differential algebra based magnetic field computations and accurate fringe field maps
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2015
\issue 4
\pages 36--55
\mathnet{http://mi.mathnet.ru/vspui266}
\elib{https://elibrary.ru/item.asp?id=25225290}
Linking options:
  • https://www.mathnet.ru/eng/vspui266
  • https://www.mathnet.ru/eng/vspui/y2015/i4/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :51
    References:28
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024