Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2015, Issue 3, Pages 41–54 (Mi vspui255)  

This article is cited in 1 scientific paper (total in 1 paper)

Applied mathematics

The problem of the distribution of heat in the material with a cut on the square

A. V. Glusgko, E. A. Loginova

Voronezh State University, 1, Universitetskaya square, Voronezh, 394006, Russian Federation
Full-text PDF (289 kB) Citations (1)
References:
Abstract: The problem of the stationary distribution of the temperature field with a variable coefficient of thermal conductivity in the inner region of a three-dimensional space with a cut on the square, which simulates a heterogeneous material with a crack in the form of a flat square is considered:
\begin{gather*} \Delta u(x_1, x_2, x_3)+k\dfrac{\partial u(x_1, x_2, x_3)}{\partial x_3} =0,~\,\,\,x\in {\mathbb R}^3 \backslash\Pi;\\ u(x_1, x_2, +0)-u(x_1, x_2, -0)=q_0(x_1, x_2),~\,\,\,x_1\in [-1;\,\,1],\,~ x_2\in [-1;\,\,1];\\ \dfrac{\partial u(x_1, x_2, +0)}{\partial x_3}+\dfrac k2 u(x_1, x_2, +0)-\dfrac{\partial u(x_1, x_2, -0)}{\partial x_3}-\dfrac k2 u(x_1, x_2, -0)=q_1(x_1, x_2), \end{gather*}
where $u(x_1, x_2, x_3)$ is the temperature at the point with coordinates $(x_1, x_2, x_3)$.
The article describes a solution of the problem, studies its properties. The main result of this study is to construct asymptotic representations of the temperature field and the heat flux near the boundary. From the formulas for the first derivatives of the solution, we can conclude that these functions at the boundaries of the crack-square are singular terms of higher order than the inside of the cut. Refs 8.
Keywords: thermal potentials, the non-homogeneous material with a square cut, the asymptotic solution.
Received: April 30, 2015
Bibliographic databases:
Document Type: Article
UDC: 517.955.8
Language: Russian
Citation: A. V. Glusgko, E. A. Loginova, “The problem of the distribution of heat in the material with a cut on the square”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2015, no. 3, 41–54
Citation in format AMSBIB
\Bibitem{GluLog15}
\by A.~V.~Glusgko, E.~A.~Loginova
\paper The problem of the distribution of heat in the material with a cut on the square
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2015
\issue 3
\pages 41--54
\mathnet{http://mi.mathnet.ru/vspui255}
\elib{https://elibrary.ru/item.asp?id=24323221}
Linking options:
  • https://www.mathnet.ru/eng/vspui255
  • https://www.mathnet.ru/eng/vspui/y2015/i3/p41
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025