Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2015, Issue 2, Pages 91–105 (Mi vspui245)  

Applied mathematics

Necessary conditions for a minimum of a polynomial of integral functionals

A. V. Fominyh

St. Petersburg State University, 7/9, Universitetskaya embankment, St. Petersburg, 199034, Russian Federation
References:
Abstract: This paper investigates the conditions for a minimum of a “polynomial” functional. Gateaux gradient and necessary conditions for a minimum are obtained for the “polynomial” functional. The necessary minimum conditions are used in the description of the steepest descent method for the considered problem. Further the problem of constrained minimizing of the “polynomial” functional is investigated. Using the theory of exact penalty functions, this problem under constraints reduces to the problem of unconstrained minimization. The resulting minimum conditions allow us to describe the method of hypodifferential descent for the considered problem. Numerical examples of the described methods are included. The problem of minimizing the product of powers of the integrals is widely used in aerodynamics. Some examples of integral equations and the problem of the control theory are given, which can be reduced to the problem of minimizing a “polynomial” functional. Bibliogr. 14. Table 1.
Keywords: Gateaux gradient, variation, exact penalty function, steepest descent method, hypodifferential descent method, aerodynamics, control, polynomial, integral functional.
Received: February 17, 2015
Bibliographic databases:
Document Type: Article
UDC: 519.97
Language: Russian
Citation: A. V. Fominyh, “Necessary conditions for a minimum of a polynomial of integral functionals”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2015, no. 2, 91–105
Citation in format AMSBIB
\Bibitem{Fom15}
\by A.~V.~Fominyh
\paper Necessary conditions for a minimum of a polynomial of integral functionals
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2015
\issue 2
\pages 91--105
\mathnet{http://mi.mathnet.ru/vspui245}
\elib{https://elibrary.ru/item.asp?id=23719527}
Linking options:
  • https://www.mathnet.ru/eng/vspui245
  • https://www.mathnet.ru/eng/vspui/y2015/i2/p91
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:217
    Full-text PDF :52
    References:48
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024