Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2015, Issue 1, Pages 107–119 (Mi vspui234)  

Control processes

Stability analysis of equilibrium positions of nonlinear mechanical systems with nonstationary leading parameter at the potential forces

A. Yu. Aleksandrov, E. B. Aleksandrova, A. V. Platonov

St. Petersburg State University, 7/9, Universitetskaya embankment, St. Petersburg, 199034, Russian Federation
References:
Abstract: Certain classes of nonlinear mechanical systems described by the Lagrange differential equations of the second kind with nonstationary evolution of potential forces resulting in their domination are studied. This evolution is defined by a time-varying parameter at the vector of potential forces. It is assumed that the parameter value unlimitedly increases with time. Along with potential forces, gyroscopic and essentially nonlinear dissipative forces act on the examined systems. First, we assume that dissipative forces are determined by the homogeneous Rayleigh function, and after that the case when dissipative forces depend not only on generalized velocities but also on generalized coordinates is investigated. By the use of the Lyapunov direct method and the differential inequalities method, sufficient conditions of the asymptotic stability of the trivial equilibrium position both with respect to all variables and with respect to part of the variables are determined. Furthermore, we study the case when the dissipative forces do not act on the considered system. It is shown that the approaches suggested in this paper allow us to obtain conditions of the asymptotic stability of the equilibrium position with respect to the generalized cooordinates. Compared with known results, these conditions extend types of evolution laws of potential forces for which one can guarantee the asymptotic stability. Two examples are presented to demonstrate the effectiveness of the developed approaches. Bibliogr. 23.
Keywords: mechanical systems, potential forces, nonstationary parameter, asymptotic stability, Lyapunov functions.
Received: November 13, 2014
Bibliographic databases:
Document Type: Article
UDC: 531.36
Language: Russian
Citation: A. Yu. Aleksandrov, E. B. Aleksandrova, A. V. Platonov, “Stability analysis of equilibrium positions of nonlinear mechanical systems with nonstationary leading parameter at the potential forces”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2015, no. 1, 107–119
Citation in format AMSBIB
\Bibitem{AleAlePla15}
\by A.~Yu.~Aleksandrov, E.~B.~Aleksandrova, A.~V.~Platonov
\paper Stability analysis of equilibrium positions of nonlinear mechanical systems with nonstationary leading parameter at the potential forces
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2015
\issue 1
\pages 107--119
\mathnet{http://mi.mathnet.ru/vspui234}
\elib{https://elibrary.ru/item.asp?id=22988798}
Linking options:
  • https://www.mathnet.ru/eng/vspui234
  • https://www.mathnet.ru/eng/vspui/y2015/i1/p107
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025