Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2013, Issue 3, Pages 67–72 (Mi vspui136)  

This article is cited in 1 scientific paper (total in 1 paper)

Applied mathematics

On $B_\varphi$-spline approximation

Yu. K. Demjanovich, V. O. Dron, O. N. Ivantsova

St. Petersburg State University, St. Petersburg 199034, Russian Federation
Full-text PDF (201 kB) Citations (1)
References:
Abstract: Evaluations of approach for function $u\in C^2(\alpha,\beta)$ with biorthogonal non-polynomial $B_\varphi$-spline approximation $\widetilde u$ of the first order are discussed. Spline grid $\{x_j\}_{j\in\mathbb Z}$ is defined on an interval $(\alpha, \beta)$ such that $\lim_{j\to -\infty}x_j=\alpha$, $\lim_{j\to +\infty}x_j=\beta$. Coordinate $B_\varphi$-splines are obtained by approximation relations with generating vector-function $\varphi=(\varphi_0,\varphi_1)^T$ under condition that absolute value of Wronskian for the functions $\varphi_0,\varphi_1$ isn't less than $c>0$. The method of integral representation of residual is applied; the last one differs from method of similarity, which is implicated in the case of polynomial splines. As a result the evaluations of norms $\|u^{(i)}-\widetilde u^{(i)}\|_{C[x_k,x_{k+1}]}$ are obtained by product of $2c^{-1}(x_{k+1}-x_{k})^{2-i}$ and
$$\sup_{\xi,\eta\in [x_k,x_{k+1}]} |\det(\Phi(x_k),\Phi\,'(\xi),\Phi\,''(\eta))|;$$
here $\Phi(t)= (\varphi_0(t),\varphi_1(t),u(t))^T$, $i=0,1,2$. The evaluations are exact for components of generating vector-functions $\varphi$. If $x_{k+1}-x_k\to 0$ then the determinant tends to the linear differential operator of the second order over function $u$, where fundamental solutions of the differential equation with mentioned operator and zero right part are functions $\varphi_0(t),\varphi_1(t)$. Bibliogr. 3.
Keywords: splines, biorthogonal systems, residual of approximation.
Received: March 21, 2013
Document Type: Article
UDC: 519
Language: Russian
Citation: Yu. K. Demjanovich, V. O. Dron, O. N. Ivantsova, “On $B_\varphi$-spline approximation”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 3, 67–72
Citation in format AMSBIB
\Bibitem{DemDroIva13}
\by Yu.~K.~Demjanovich, V.~O.~Dron, O.~N.~Ivantsova
\paper On $B_\varphi$-spline approximation
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2013
\issue 3
\pages 67--72
\mathnet{http://mi.mathnet.ru/vspui136}
Linking options:
  • https://www.mathnet.ru/eng/vspui136
  • https://www.mathnet.ru/eng/vspui/y2013/i3/p67
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:157
    Full-text PDF :35
    References:30
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024