Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2013, Issue 1, Pages 11–17 (Mi vspui104)  

This article is cited in 1 scientific paper (total in 1 paper)

Applied mathematics

The problem of projecting the origin on a quadric

D. M. Lebedev, L. N. Polyakova

Saint-Petersburg State University
Full-text PDF (297 kB) Citations (1)
References:
Abstract: The problem of finding a point on a quadric with the least Euclidean norm is considered. This is a classical optimization problem for whose solving there exist a lot of methods, e.g., the method of Lagrange multipliers. In this paper a method for solving the stated problem is proposed. Depending on the sign of the constant term of the quadratic function defining the quadric, the original problem is reduced to one of two types of problems, each of them constructs a polynomial of degree $2n$ and finds its positive roots. Such roots always exist. For the positive numbers thus constructed, the points lying on the quadric and having the smallest Euclidean norm are determined. If the given set is an ellipsoid defined by a quadratic function with a negative constant term, the method allows to determine not only the points with the minimal norm, but also the points which are the most remoted from the origin (having the maximal distance from the origin). Bibliogr. 7. Il. 2.
Keywords: quadric, Euclidean norm, the Lagrange function, positive roots of a polynomial.

Accepted: October 25, 2012
Document Type: Article
UDC: 539.85
Language: Russian
Citation: D. M. Lebedev, L. N. Polyakova, “The problem of projecting the origin on a quadric”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2013, no. 1, 11–17
Citation in format AMSBIB
\Bibitem{LebPol13}
\by D.~M.~Lebedev, L.~N.~Polyakova
\paper The problem of projecting the origin on a quadric
\jour Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr.
\yr 2013
\issue 1
\pages 11--17
\mathnet{http://mi.mathnet.ru/vspui104}
Linking options:
  • https://www.mathnet.ru/eng/vspui104
  • https://www.mathnet.ru/eng/vspui/y2013/i1/p11
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Санкт-Петербургского университета. Серия 10. Прикладная математика. Информатика. Процессы управления
    Statistics & downloads:
    Abstract page:246
    Full-text PDF :55
    References:35
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024