Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2021, Volume 8, Issue 3, Pages 455–466
DOI: https://doi.org/10.21638/spbu01.2021.307
(Mi vspua95)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

A proof of Bel'tyukov-Lipshitz theorem by quasi-quantifier elimination. I. Definitions and GCD-lemma

M. R. Starchak

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (358 kB) Citations (1)
Abstract: This paper is the first part of a new proof of decidability of the existential theory of the structure $\langle\mathrm{Z}; 0, 1,+,-,\leqslant, |\rangle$, where $|$ corresponds to the binary divisibility relation. The decidability was proved independently in 1976 by A. P. Bel'tyukov and L. Lipshitz. In 1977, V.I. Mart'yanov proved an equivalent result by considering the ternary GCD predicate instead of divisibility (the predicates are interchangeable with respect to existential definability). Generalizing in some sense the notion of quantifier elimination (QE) algorithm, we construct a quasi-QE algorithm to prove decidability of the positive existential theory of the structure $\langle\mathrm{Z}_{>0};1, \{a\cdot\}_{a\in\mathrm{Z}_{>0}}, GCD\rangle$. We reduce to the decision problem for this theory the decision problem for the existential theory of the structure $\langle\mathrm{Z}_{>0};1, +, - , \leqslant, GCD\rangle$. A quasi-QE algorithm, which performs this reduction, will be constructed in the second part of the proof. Transformations of formulas are based on a generalization of the Chinese remainder theorem to systems of the form $GCD(a_i, b_i + x) = d_i$ for every $i \in [1..m]$, where $a_i$, $b_i$, $d_i$ are some integers such that $a_i \neq 0$, $d_i > 0$.
Keywords: quantifier elimination, existential theory, divisibility, decidability, Chinese remainder theorem.
Received: 28.08.2020
Revised: 24.01.2020
Accepted: 19.03.2020
English version:
Vestnik St. Petersburg University, Mathematics, 2021, Volume 8, Issue 4, Pages 264–272
DOI: https://doi.org/10.1134/S1063454121030080
Document Type: Article
UDC: 510.53, 510.652
Language: Russian
Citation: M. R. Starchak, “A proof of Bel'tyukov-Lipshitz theorem by quasi-quantifier elimination. I. Definitions and GCD-lemma”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8:3 (2021), 455–466; Vestn. St. Petersbg. Univ., Math., 8:4 (2021), 264–272
Citation in format AMSBIB
\Bibitem{Sta21}
\by M.~R.~Starchak
\paper A proof of Bel'tyukov-Lipshitz theorem by quasi-quantifier elimination. I. Definitions and GCD-lemma
\jour Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
\yr 2021
\vol 8
\issue 3
\pages 455--466
\mathnet{http://mi.mathnet.ru/vspua95}
\crossref{https://doi.org/10.21638/spbu01.2021.307}
\transl
\jour Vestn. St. Petersbg. Univ., Math.
\yr 2021
\vol 8
\issue 4
\pages 264--272
\crossref{https://doi.org/10.1134/S1063454121030080}
Linking options:
  • https://www.mathnet.ru/eng/vspua95
  • https://www.mathnet.ru/eng/vspua/v8/i3/p455
    Cycle of papers
    This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
    Statistics & downloads:
    Abstract page:28
    Full-text PDF :23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024