Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2022, Volume 9, Issue 4, Pages 612–624
DOI: https://doi.org/10.21638/spbu01.2022.404
(Mi vspua56)
 

MATHEMATICS

Complement to the Hölder inequality for multiple integrals. II

B. F. Ivanovab

a St Petersburg State University of Industrial Technologies and Design, 18, ul. Bolshaya Morskaya, St Petersburg, 191186, Russian Federation
b Higher School of Technology and Energy, 4, ul. Ivana Chernykh, St Petersburg, 198095, Russian Federation
References:
Abstract: This article is the second and final part of the author's work published in the previous issue of the journal. The main result of the article is the statement that if for functions $\gamma_1 \in L^p_1(\mathrm{R}^n)$, where $m \geqslant 2$ and the numbers $p_1,\ldots , p_m \in (1, + \infty]$ are such that $1/p_1 + \ldots + 1/p_m < 1$ the "non-resonant" condition is fulfilled (the concept introduced by the author in the previous work for functions from spaces $L^p(\mathrm{R}^n)$, $p \in (1, +\infty])$, then: $\sup_{a,b \in {\mathrm{R}^n}}\left|\int_{[a,b]}\prod_{k=1}^m [\gamma_k(\tau)+\Delta_k(\tau)]d\tau\right| \leqslant \mathrm{C}\prod_{k=1}^m||\gamma_k+\Delta_{\gamma_k}||_{L_{h_k}^{p_k}(\mathrm{R}^n)}$, where $[a, b]$ - $n$-dimensional parallelepiped, the constant $C > 0$ does not depend on functions of $\Delta_{\gamma_k} \in L_{h_k}^{p_k}(\mathrm{R}^n)$, and $L_{h_k}^{p_k}(\mathrm{R}^n) \subset L^{p_k}(\mathrm{R}^n), 1 \leqslant k \leqslant m$ - are some specially constructed normalized spaces. In addition, in terms of the fulfillment of some non-resonant condition, the paper gives a test of a boundedness of the integral from the product of functions when integrating over a subset of $\mathrm{R}^n$.
Keywords: resonance, Hölder inequality, Fourier transform, integral inequalities.
Received: 16.02.2022
Revised: 20.04.2022
Accepted: 09.06.2022
English version:
Vestnik St. Petersburg University, Mathematics, 2022, Volume 9, Issue 4, Pages 396–405
DOI: https://doi.org/10.1134/S1063454122040100
Document Type: Article
UDC: 517
MSC: 26D15
Language: Russian
Citation: B. F. Ivanov, “Complement to the Hölder inequality for multiple integrals. II”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9:4 (2022), 612–624; Vestn. St. Petersbg. Univ., Math., 9:4 (2022), 396–405
Citation in format AMSBIB
\Bibitem{Iva22}
\by B.~F.~Ivanov
\paper Complement to the H\"older inequality for multiple integrals. II
\jour Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
\yr 2022
\vol 9
\issue 4
\pages 612--624
\mathnet{http://mi.mathnet.ru/vspua56}
\crossref{https://doi.org/10.21638/spbu01.2022.404}
\transl
\jour Vestn. St. Petersbg. Univ., Math.
\yr 2022
\vol 9
\issue 4
\pages 396--405
\crossref{https://doi.org/10.1134/S1063454122040100}
Linking options:
  • https://www.mathnet.ru/eng/vspua56
  • https://www.mathnet.ru/eng/vspua/v9/i4/p612
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
    Statistics & downloads:
    Abstract page:48
    Full-text PDF :38
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024