Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2022, Volume 9, Issue 1, Pages 3–10
DOI: https://doi.org/10.21638/spbu01.2022.101
(Mi vspua36)
 

MATHEMATICS

Stabilization of some classes of uncertain control systems with evaluation of admissible disturation for object matrix

I. E. Zuber

Institute of Problems of Mechanical Engineering of the Russian Academy of Sciences, 61, Bolshoy pr. V.O., St Petersburg, 199178, Russian Federation
References:
Abstract: Consider the system $\dot{x} = M(·)x + e_{n}u$, $u = s^{T}x$, where $M(·) \in R^{n \times n}$, $s \in R^n$, the pair $M(·)$, $e_n$ is uniformly controlable. The elements of $M(·)$ are nonlook-ahead functionals of arbitrary nature. The object matrix is considering in form $M(·) = A(·) + D(·)$, where $A(·)$ has a form of globalized Frobenious matrix, $D(·)$ is a matrix of disturbation. Consider the square Lyapunov function $V(x)$ with constant matrix of special form and number $\alpha > 0$ as estimate for $\dot{V}$ for case $D(·) = 0$. The definition of such vector $s$ and such estimate of norm matrix $D(·)$ that system is globally and exponentially stable are performed for every $\alpha > 0$.
Keywords: uncertain systems, global and exponential stability, the square Lyapunov function.
Received: 23.03.2021
Revised: 31.07.2021
Accepted: 02.09.2021
English version:
Vestnik St. Petersburg University, Mathematics, 2022, Volume 9, Issue 1, Pages 3–10
DOI: https://doi.org/10.1134/S1063454122010174
Document Type: Article
UDC: 517.938
MSC: 39А30
Language: Russian
Citation: I. E. Zuber, “Stabilization of some classes of uncertain control systems with evaluation of admissible disturation for object matrix”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9:1 (2022), 3–10; Vestn. St. Petersbg. Univ., Math., 9:1 (2022), 3–10
Citation in format AMSBIB
\Bibitem{Zub22}
\by I.~E.~Zuber
\paper Stabilization of some classes of uncertain control systems with evaluation of admissible disturation for object matrix
\jour Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
\yr 2022
\vol 9
\issue 1
\pages 3--10
\mathnet{http://mi.mathnet.ru/vspua36}
\crossref{https://doi.org/10.21638/spbu01.2022.101}
\transl
\jour Vestn. St. Petersbg. Univ., Math.
\yr 2022
\vol 9
\issue 1
\pages 3--10
\crossref{https://doi.org/10.1134/S1063454122010174}
Linking options:
  • https://www.mathnet.ru/eng/vspua36
  • https://www.mathnet.ru/eng/vspua/v9/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
    Statistics & downloads:
    Abstract page:23
    Full-text PDF :18
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024