Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2020, Volume 7, Issue 2, Pages 343–355
DOI: https://doi.org/10.21638/11701/spbu01.2020.216
(Mi vspua195)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Second order monotone difference schemes with approximation on non-uniform grids for two-dimensional quasilinear parabolic convection-diffusion equations

L. M. Hieua, D. N. Thanhb, V. B. Prasathcdef

a University of Economics, The University of Danang, Danang, Vietnam
b Department of Information Technology, School of Business Information Technology, University of Economics Ho Chi Minh city, Vietnam
c Cincinnati Children’s Hospital Medical Center, Cincinnati, USA
d Department of Pediatrics, University of Cincinnati, Ohio USA
e Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Ohio USA
f Department of Electrical Engineering and Computer Science, University of Cincinnati, Ohio USA
Full-text PDF (372 kB) Citations (2)
Abstract: The present communication is devoted to the construction of monotone difference schemes of the second order of local approximation on non-uniform grids in space for 2D quasilinear parabolic convection-diffusion equation. With the help of difference maximum principle, two-sided estimates of the difference solution are established and an important a priori estimate in a uniform norm C is proved. It is interesting to note that the maximal and minimal values of the difference solution do not depend on the diffusion and convection coefficients.
Keywords: non-uniform grid, maximum principle, regularization principle, monotone difference scheme, convection-diffusion equation.
Received: 31.07.2019
Revised: 01.12.2019
Accepted: 12.12.2019
English version:
Vestnik St. Petersburg University, Mathematics, 2020, Volume 7, Issue 2, Pages 232–240
DOI: https://doi.org/10.1134/S1063454120020107
Document Type: Article
UDC: 519.63
MSC: 65M06, 35K59, 76R50
Language: Russian
Citation: L. M. Hieu, D. N. Thanh, V. B. Prasath, “Second order monotone difference schemes with approximation on non-uniform grids for two-dimensional quasilinear parabolic convection-diffusion equations”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:2 (2020), 343–355; Vestn. St. Petersbg. Univ., Math., 7:2 (2020), 232–240
Citation in format AMSBIB
\Bibitem{HieThaPra20}
\by L.~M.~Hieu, D.~N.~Thanh, V.~B.~Prasath
\paper Second order monotone difference schemes with approximation on non-uniform grids for two-dimensional quasilinear parabolic convection-diffusion equations
\jour Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
\yr 2020
\vol 7
\issue 2
\pages 343--355
\mathnet{http://mi.mathnet.ru/vspua195}
\crossref{https://doi.org/10.21638/11701/spbu01.2020.216}
\transl
\jour Vestn. St. Petersbg. Univ., Math.
\yr 2020
\vol 7
\issue 2
\pages 232--240
\crossref{https://doi.org/10.1134/S1063454120020107}
Linking options:
  • https://www.mathnet.ru/eng/vspua195
  • https://www.mathnet.ru/eng/vspua/v7/i2/p343
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
    Statistics & downloads:
    Abstract page:28
    Full-text PDF :14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024