Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2020, Volume 7, Issue 2, Pages 269–276
DOI: https://doi.org/10.21638/11701/spbu01.2020.209
(Mi vspua188)
 

This article is cited in 2 scientific papers (total in 2 papers)

IN MEMORIAM OF V. A. PLISS

On the stability of "nonlinear center" under quasiperiodic perturbations

V. V. Basov, Yu. N. Bibikov

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (297 kB) Citations (2)
Abstract: The problem of the stability of the zero solution of a system with critical point of the "center" type at the origin, is considered. Such problem for autonomous systems was investigated by Liapunov. Investigations of Liapunov were continued by the authers for systems periodic in time. In the present paper systems with quasi-periodic dependence on time, are considered. It is supposed that the basic frequencies of quasi-periodic functions sutisfy the standard condition of diophantine type. The problem under consideration can be intepreted as the problem of the stability of the state of equilibrium of the oscillator $\ddot{x} + x^{2n-1} = 0$, $n$ is a integer, $n \geqslant 2$, under "small" quasiperiodic pertubations.
Keywords: stability, center, quasi-periodic function.
Received: 10.11.2019
Revised: 12.12.2019
Accepted: 12.12.2019
English version:
Vestnik St. Petersburg University, Mathematics, 2020, Volume 7, Issue 2, Pages 174–179
DOI: https://doi.org/10.1134/S1063454120020041
Document Type: Article
UDC: 517.925
MSC: 34D20, 93D05, 34D10
Language: Russian
Citation: V. V. Basov, Yu. N. Bibikov, “On the stability of "nonlinear center" under quasiperiodic perturbations”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:2 (2020), 269–276; Vestn. St. Petersbg. Univ., Math., 7:2 (2020), 174–179
Citation in format AMSBIB
\Bibitem{BasBib20}
\by V.~V.~Basov, Yu.~N.~Bibikov
\paper On the stability of "nonlinear center'' under quasiperiodic perturbations
\jour Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
\yr 2020
\vol 7
\issue 2
\pages 269--276
\mathnet{http://mi.mathnet.ru/vspua188}
\crossref{https://doi.org/10.21638/11701/spbu01.2020.209}
\transl
\jour Vestn. St. Petersbg. Univ., Math.
\yr 2020
\vol 7
\issue 2
\pages 174--179
\crossref{https://doi.org/10.1134/S1063454120020041}
Linking options:
  • https://www.mathnet.ru/eng/vspua188
  • https://www.mathnet.ru/eng/vspua/v7/i2/p269
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024