Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2020, Volume 7, Issue 2, Pages 210–216
DOI: https://doi.org/10.21638/11701/spbu01.2020.203
(Mi vspua182)
 

This article is cited in 1 scientific paper (total in 1 paper)

ON THE ANNIVERSARY OF A. I. GENERALOV

Calculations in generalised lubin - Tate theory

S. V. Vostokov, E. O. Leonova

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Full-text PDF (301 kB) Citations (1)
Abstract: In this paper, we study different extensions of local fields. For an arbitrary finite extension of the field of p-adic numbers $K/Q_p$ it is possible to describe, using the famous Lubin - Tate theory, its maximal abelian extension $K^{ab}/K$ and the corresponding Galois group. It is a Cartesian product of the groups appearing from the maximal unramified extension of K and a fully ramified extension obtained using the roots of some endomorphisms of the Lubin - Tate formal groups. Here, we are going to consider so-called generalised Lubin - Tate formal groups and the extensions that appear after adding the roots of their isomorphisms to the initial field. Using the fact that for a finite unramified extension $T_m$ of degree m of the field K one of such formal groups coincides with a classical one, it became possible to obtain the Galois group of the extension $(T_m)^{ab}/K$. The main result of the paper is explicit description of the Galois group of the extension $(K^{ur})^ {ab}/K$, where $K^{ur}$ is the maximal unramified extension of the field $K$. We also applied similar methods to the study of ramified extensions of $K$.
Keywords: maximal unramified extension, formal group law.
Funding agency Grant number
Russian Science Foundation 16-11-10200
The work is supported by Russian Science Foundation (grant N 16-11-10200).
Received: 27.10.2019
Revised: 22.11.2019
Accepted: 12.12.2019
English version:
Vestnik St. Petersburg University, Mathematics, 2020, Volume 7, Issue 2, Pages 131–135
DOI: https://doi.org/10.1134/S1063454120020168
Document Type: Article
UDC: 511.223
MSC: 11S31
Language: Russian
Citation: S. V. Vostokov, E. O. Leonova, “Calculations in generalised lubin - Tate theory”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:2 (2020), 210–216; Vestn. St. Petersbg. Univ., Math., 7:2 (2020), 131–135
Citation in format AMSBIB
\Bibitem{VosLeo20}
\by S.~V.~Vostokov, E.~O.~Leonova
\paper Calculations in generalised lubin - Tate theory
\jour Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
\yr 2020
\vol 7
\issue 2
\pages 210--216
\mathnet{http://mi.mathnet.ru/vspua182}
\crossref{https://doi.org/10.21638/11701/spbu01.2020.203}
\transl
\jour Vestn. St. Petersbg. Univ., Math.
\yr 2020
\vol 7
\issue 2
\pages 131--135
\crossref{https://doi.org/10.1134/S1063454120020168}
Linking options:
  • https://www.mathnet.ru/eng/vspua182
  • https://www.mathnet.ru/eng/vspua/v7/i2/p210
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
    Statistics & downloads:
    Abstract page:59
    Full-text PDF :13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024