Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2020, Volume 7, Issue 3, Pages 453–468
DOI: https://doi.org/10.21638/spbu01.2020.308
(Mi vspua169)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On some local asymptotic properties of sequences with a random index

O. V. Rusakova, Yu. V. Yakubovicha, B. A. Baevb

a St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
b National Research University Higher School of Economics, 16, ul. Soyuza Pechatnikov, St. Petersburg, 190121, Russian Federation
Full-text PDF (372 kB) Citations (1)
Abstract: We consider sequences of random variables with the index subordinated by a doubly stochastic Poisson process. A Poisson stochastic index process, or PSI-process for short, is a random process $\psi(t\lambda)$ with the continuous time $t$ which one can obtain via subordination of a sequence of random variables $(\xi_j)$, $j = 0, 1, \ldots$, by a doubly stochastic Poisson process $\Pi_1(t\lambda)$ as follows: $\psi(t) = \xi_{\Pi_1(t\lambda)}$, $t \geqslant 0$. We suppose that the intensity $\lambda$ is a nonnegative random variable independent of the standard Poisson process $\Pi_1$. In the present paper we consider the case of independent identically distributed random variables $(\xi_j)$ with a finite variance. R. Wolpert and M. Taqqu (2005) introduce and investigate a type of the fractional Ornstein - Uhlenbeck (fOU) process. We provide a representation for such fOU process with the Hurst exponent $H \in (0, 1/2)$ as a limit of scaled and normalized sums of independent identically distributed PSI-processes with an explicitly given intensity $\lambda$. This fOU process, locally at $t = 0$, approximates in the square mean the fractional Brownian motion with the same Hurst exponent $H \in (0, 1/2)$. We examine in details two examples with the intensity corresponding to the R. Wolpert and M. Taqqu's fOU process: a telegraph process, arising for $\xi_0$ having the Rademacher distribution $\pm1$ with probabilities $1/2$, and a PSI-process with the uniform distribution for $\xi_0$. For these two examples we derive exact and asymptotic formulae for a local modulus of continuity over a small time interval for a single PSI-process.
Keywords: fractional Ornstein - Uhlenbeck process, fractional Brownian motion, pseudoPoisson process, random intensity, telegraph process, modulus of continuity.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00646 А
The work is partially supported by Russian Foundation for Basic Research (grant no. 20-01-00646 А).
Received: 12.07.2019
Revised: 11.03.2020
Accepted: 19.03.2020
English version:
Vestnik St. Petersburg University, Mathematics, 2020, Volume 7, Issue 3, Pages 308–319
DOI: https://doi.org/10.1134/S1063454120030115
Document Type: Article
UDC: 519.218
MSC: 60G18
Language: Russian
Citation: O. V. Rusakov, Yu. V. Yakubovich, B. A. Baev, “On some local asymptotic properties of sequences with a random index”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:3 (2020), 453–468; Vestn. St. Petersbg. Univ., Math., 7:3 (2020), 308–319
Citation in format AMSBIB
\Bibitem{RusYakBae20}
\by O.~V.~Rusakov, Yu.~V.~Yakubovich, B.~A.~Baev
\paper On some local asymptotic properties of sequences with a random index
\jour Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
\yr 2020
\vol 7
\issue 3
\pages 453--468
\mathnet{http://mi.mathnet.ru/vspua169}
\crossref{https://doi.org/10.21638/spbu01.2020.308}
\transl
\jour Vestn. St. Petersbg. Univ., Math.
\yr 2020
\vol 7
\issue 3
\pages 308--319
\crossref{https://doi.org/10.1134/S1063454120030115}
Linking options:
  • https://www.mathnet.ru/eng/vspua169
  • https://www.mathnet.ru/eng/vspua/v7/i3/p453
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
    Statistics & downloads:
    Abstract page:36
    Full-text PDF :9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024