Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2020, Volume 7, Issue 3, Pages 404–417
DOI: https://doi.org/10.21638/spbu01.2020.304
(Mi vspua165)
 

MATHEMATICS

Optimal subspaces for mean square approximation of classes of differentiable functions on a segment

O. L. Vinogradov, A. Yu. Ulitskaya

St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
Abstract: In this paper, we specify a set of optimal subspaces for $L_2$ approximation of three classes of functions in the Sobolev spaces $W_2^{(r)}$, defined on a segment and subject to certain boundary conditions. A subspace $X$ of dimension not exceeding n is called optimal for a function class $A$ if the best approximation of $A$ by $X$ equals the Kolmogorov $n$-width of $A$. These boundary conditions correspond to subspaces of periodically extended functions with symmetry properties. All of the approximating subspaces are generated by equidistant shifts of a single function. The conditions of optimality are given in terms of Fourier coefficients of a generating function. In particular, we indicate optimal spline spaces of all degrees $d \geqslant r-1$ with equidistant knots of several different types.
Keywords: spaces of shifts, splines, n-widths.
Funding agency Grant number
Russian Science Foundation 18-11-00055
This work is supported by the Russian Science Foundation under grant no. 18-11-00055.
Received: 19.02.2020
Revised: 14.03.2020
Accepted: 19.03.2020
English version:
Vestnik St. Petersburg University, Mathematics, 2020, Volume 7, Issue 3, Pages 270–281
DOI: https://doi.org/10.1134/S1063454120030164
Document Type: Article
UDC: 517.5
MSC: 41A15, 41A17, 41A44
Language: Russian
Citation: O. L. Vinogradov, A. Yu. Ulitskaya, “Optimal subspaces for mean square approximation of classes of differentiable functions on a segment”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:3 (2020), 404–417; Vestn. St. Petersbg. Univ., Math., 7:3 (2020), 270–281
Citation in format AMSBIB
\Bibitem{VinUli20}
\by O.~L.~Vinogradov, A.~Yu.~Ulitskaya
\paper Optimal subspaces for mean square approximation of classes of differentiable functions on a segment
\jour Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
\yr 2020
\vol 7
\issue 3
\pages 404--417
\mathnet{http://mi.mathnet.ru/vspua165}
\crossref{https://doi.org/10.21638/spbu01.2020.304}
\transl
\jour Vestn. St. Petersbg. Univ., Math.
\yr 2020
\vol 7
\issue 3
\pages 270--281
\crossref{https://doi.org/10.1134/S1063454120030164}
Linking options:
  • https://www.mathnet.ru/eng/vspua165
  • https://www.mathnet.ru/eng/vspua/v7/i3/p404
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
    Statistics & downloads:
    Abstract page:52
    Full-text PDF :15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024