|
This article is cited in 1 scientific paper (total in 1 paper)
ON THE ANNIVERSARY OF S. V. VOSTOKOV
Regular formal modules in local fields and irregularly degree
N. K. Vlaskinaa, S. V. Vostokova, P. N. Pitala, A. E. Tsybyshevb a St. Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, 27, nab. r. Fontanki, St. Petersburg, 191029, Russian Federation
Abstract:
In this paper we investigate the irregular degree of finite not ramified local field extantions with respect to a polynomial formal group and in the multiplicative case. There was found necessary and sufficient conditions for the existence of primitive roots of $p^s$ power from $1$ and (endomorphism $[p^s]F_m$) in $L$-th unramified extension of the local field $K$ (for all positive integer $s$). These conditions depend only on the ramification index of the maximal abelian subextension of the field $K$ $K_a/Q_p$.
Keywords:
regular formal modules, formal modules, formal groups, local fields.
Received: 15.05.2020 Revised: 17.07.2020 Accepted: 18.07.2020
Citation:
N. K. Vlaskina, S. V. Vostokov, P. N. Pital, A. E. Tsybyshev, “Regular formal modules in local fields and irregularly degree”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:4 (2020), 588–596; Vestn. St. Petersbg. Univ., Math., 7:4 (2020), 398–403
Linking options:
https://www.mathnet.ru/eng/vspua148 https://www.mathnet.ru/eng/vspua/v7/i4/p588
|
Statistics & downloads: |
Abstract page: | 69 | Full-text PDF : | 12 |
|