Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2021, Volume 8, Issue 1, Pages 49–62
DOI: https://doi.org/10.21638/spbu01.2021.105
(Mi vspua131)
 

MATHEMATICS

Power series of several variables with condition of logarithmical convexity

A. V. Zheleznyak

St. Petersburg Electrotechnical University LETI, 5, ul. Professora Popova, St. Petersburg, 197376, Russian Federation
Abstract: We obtain a new version of Hardy theorem about power series of several variables reciprocal to the power series with positive coefficients. We prove that if the sequence $\{a_s\} = a_{s_1,s_2,\ldots,s_n}$ , $||s|| \geqslant K$ satisfies condition of logarithmically convexity and the first coefficient $a_0$ is sufficiently large then reciprocal power series has only negative coefficients ${b_s} = b_{s_1},s_2,\ldots,s_n$ , except $b_{0,0,\ldots,0}$ for any $K$. The classical Hardy theorem corresponds to the case $K = 0, n = 1$. Such results are useful in Nevanlinna—Pick theory. For example, if function $k(x, y)$ can be represented as power series $\sum_{n \geqslant 0} a_n (x\bar{y})^n, a_n > 0$, and reciprocal function $1 / k(x,y)$ can be represented as power series $\sum_{n\geqslant 0} b_n(x\bar{y})^n$ such that $b_n < 0, n > 0$, then $k(x, y)$ is a reproducing kernel function for some Hilbert space of analytic functions in the unit disc $D$ with Nevanlinna—Pick property. The reproducing kernel $1/(1-x\bar{y})$ of the classical Hardy space $H^2 (D)$ is a prime example for our theorems.
Keywords: power series, Nevanlinna - Pick kernels, logarithmical convexity.
Received: 28.04.2020
Revised: 04.06.2020
Accepted: 17.09.2020
English version:
Vestnik St. Petersburg University, Mathematics, 2021, Volume 8, Issue 3, Pages 39–49
DOI: https://doi.org/10.1134/S106345412101012X
Document Type: Article
UDC: 517.521
MSC: 32A05
Language: Russian
Citation: A. V. Zheleznyak, “Power series of several variables with condition of logarithmical convexity”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8:1 (2021), 49–62; Vestn. St. Petersbg. Univ., Math., 8:3 (2021), 39–49
Citation in format AMSBIB
\Bibitem{Zhe21}
\by A.~V.~Zheleznyak
\paper Power series of several variables with condition of logarithmical convexity
\jour Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
\yr 2021
\vol 8
\issue 1
\pages 49--62
\mathnet{http://mi.mathnet.ru/vspua131}
\crossref{https://doi.org/10.21638/spbu01.2021.105}
\transl
\jour Vestn. St. Petersbg. Univ., Math.
\yr 2021
\vol 8
\issue 3
\pages 39--49
\crossref{https://doi.org/10.1134/S106345412101012X}
Linking options:
  • https://www.mathnet.ru/eng/vspua131
  • https://www.mathnet.ru/eng/vspua/v8/i1/p49
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024