Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya, 2023, Volume 29, Issue 3, Pages 64–71
DOI: https://doi.org/10.18287/2541-7525-2023-29-3-64-71
(Mi vsgu712)
 

Mathematics

Subharmonic envelopes for functions on domains

B. N. Khabibullin

Institute of Mathematics with Computing Centre, Ufa Federal Research Center of the Russian Academy of Sciences, Ufa, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: One of the most common problems in various fields of real and complex analysis is the questions of the existence and construction for a given function of an envelope from below or from above of a function from a special class $H$. We consider a case when $H$ is the convex cone of all subharmonic functions on the domain $D$ of a finite-dimensional Euclidean space over the field of real numbers. For a pair of subharmonic functions $u$ and $M$ from this convex cone $H$, dual necessary and sufficient conditions are established under which there is a subharmonic function $h\not\equiv -\infty$, “dampening the growth” of the function $u$ in the sense that the values of the sum of $u+h$ at each point of $D$ is not greater than the value of the function $M$ at the same point. These results are supposed to be applied in the future to questions of non-triviality of weight classes of holomorphic functions, to the description of zero sets and uniqueness sets for such classes, to approximation problems of the function theory, etc.
Keywords: subharmonic function, lower envelope, ordered space, vector lattice, projective limit, linear balayage, Jensen measure, holomorphic function.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FMRS-2022-0124
The work was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (scientific topic code FMRS-2022-0124).
Received: 03.08.2023
Revised: 06.09.2023
Accepted: 30.10.2023
Document Type: Article
UDC: 517.574; 517.982.1; 517.55; 517.987.1
Language: Russian
Citation: B. N. Khabibullin, “Subharmonic envelopes for functions on domains”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 29:3 (2023), 64–71
Citation in format AMSBIB
\Bibitem{Kha23}
\by B.~N.~Khabibullin
\paper Subharmonic envelopes for functions on domains
\jour Vestnik SamU. Estestvenno-Nauchnaya Ser.
\yr 2023
\vol 29
\issue 3
\pages 64--71
\mathnet{http://mi.mathnet.ru/vsgu712}
\crossref{https://doi.org/10.18287/2541-7525-2023-29-3-64-71}
Linking options:
  • https://www.mathnet.ru/eng/vsgu712
  • https://www.mathnet.ru/eng/vsgu/v29/i3/p64
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного университета. Естественнонаучная серия
    Statistics & downloads:
    Abstract page:51
    Full-text PDF :60
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024