Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya, 2021, Volume 27, Issue 3, Pages 7–13
DOI: https://doi.org/10.18287/2541-7525-2021-27-3-7-13
(Mi vsgu659)
 

Mathematics

Well-posedness of the main mixed problem for the multidimensional lavrentiev — bitsadze equation

S. A. Aldashev

Abai Kazakh National Pedagogical University, Almaty, Republic of Kazakhstan (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: It is known that the oscillations of elastic membranes in space are modelled with partial differential equations. If the deflection of the membrane is considered as a function of $u (x,t), x=(x_{1},..., x_{m}), m\geq2,$ then, according to the Hamilton principle, we arrive to a multidimensional wave equation.
Assuming that the membrane is in equilibrium in the bending position, we also obtain the multidimensional Laplace equation from the Hamilton's principle.
Consequently, the oscillations of elastic membranes in space can be modelled with a multidimensional Lavrentiev — Bitsadze equation.
The main mixed problem in the cylindrical domain for multidimensional hyperbolic equations in the space of generalized functions is well studied. In the works of the author, the well-posedness of this problem for multidimensional hyperbolic and elliptic equations is proved, and the explicit forms of classical solutions are obtained.
As far as we know, these questions for multidimensional hyperbolic-elliptic equations have not been studied.
The mixed problem with boundary-value conditions for the multidimensional Lavrentiev — Bitsazde equation is ill-posed.
In this paper, we prove the unique solvability and obtain an explicit form of classical solution of the main mixed problem with boundary and initial conditions for the multidimensional Lavrentiev — Bitsadze equation.
Keywords: well-posedness, main mixed problem, cylindrical domain, Bessel function.
Received: 14.09.2021
Revised: 16.10.2021
Accepted: 15.11.2021
Document Type: Article
UDC: 517.956
Language: Russian
Citation: S. A. Aldashev, “Well-posedness of the main mixed problem for the multidimensional lavrentiev — bitsadze equation”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 27:3 (2021), 7–13
Citation in format AMSBIB
\Bibitem{Ald21}
\by S.~A.~Aldashev
\paper Well-posedness of the main mixed problem for the multidimensional lavrentiev~--- bitsadze equation
\jour Vestnik SamU. Estestvenno-Nauchnaya Ser.
\yr 2021
\vol 27
\issue 3
\pages 7--13
\mathnet{http://mi.mathnet.ru/vsgu659}
\crossref{https://doi.org/10.18287/2541-7525-2021-27-3-7-13}
Linking options:
  • https://www.mathnet.ru/eng/vsgu659
  • https://www.mathnet.ru/eng/vsgu/v27/i3/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного университета. Естественнонаучная серия
    Statistics & downloads:
    Abstract page:49
    Full-text PDF :27
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024