Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya, 2021, Volume 27, Issue 1, Pages 29–43
DOI: https://doi.org/10.18287/2541-7525-2021-27-1-29-43
(Mi vsgu645)
 

Mathematics

Factorization of ordinary and hyperbolic integro-differential equations with integral boundary conditions in a Banach space

E. Providasa, L. S. Pulkinab, I. N. Parasidisa

a University of Thessaly, Larissa, Greece
b Samara National Research University, Samara, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The solvability condition and the unique exact solution by the universal factorization (decomposition) method for a class of the abstract operator equations of the type
$$ B_1u=\mathcal{A}u-S\Phi(A_0u)-GF(\mathcal{A}u)=f ,\quad u\in D(B_1), $$
where $\mathcal{A}, A_0$ are linear abstract operators, $G, S$ are linear vectors and $\Phi, F$ are linear functional vectors is investigagted. This class is useful for solving Boundary Value Problems (BVPs) with Integro-Differential Equations (IDEs), where $\mathcal{A}, A_0$ are differential operators and $F(\mathcal{A}u), \Phi(A_0u)$ are Fredholm integrals. It was shown that the operators of the type $B_1$ can be factorized in the some cases in the product of two more simple operators $B_G$, $B_{G_0}$ of special form, which are derived analytically. Further the solvability condition and the unique exact solution for $B_1u=f$ easily follow from the solvability condition and the unique exact solutions for the equations $B_G v=f$ and $B_{G_0}u=v$.
Keywords: correct operator, factorization (decomposition) method, Fredholm integro-differential equations, initial problem, nonlocal boundary value problem with integral boundary conditions.
Received: 15.01.2021
Revised: 17.02.2021
Accepted: 28.02.2021
Document Type: Article
UDC: 629
Language: English
Citation: E. Providas, L. S. Pulkina, I. N. Parasidis, “Factorization of ordinary and hyperbolic integro-differential equations with integral boundary conditions in a Banach space”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 27:1 (2021), 29–43
Citation in format AMSBIB
\Bibitem{ProPulPar21}
\by E.~Providas, L.~S.~Pulkina, I.~N.~Parasidis
\paper Factorization of ordinary and hyperbolic integro-differential equations with integral boundary conditions in a Banach space
\jour Vestnik SamU. Estestvenno-Nauchnaya Ser.
\yr 2021
\vol 27
\issue 1
\pages 29--43
\mathnet{http://mi.mathnet.ru/vsgu645}
\crossref{https://doi.org/10.18287/2541-7525-2021-27-1-29-43}
Linking options:
  • https://www.mathnet.ru/eng/vsgu645
  • https://www.mathnet.ru/eng/vsgu/v27/i1/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного университета. Естественнонаучная серия
    Statistics & downloads:
    Abstract page:110
    Full-text PDF :30
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024