Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya, 2019, Volume 25, Issue 1, Pages 7–20
DOI: https://doi.org/10.18287/2541-7525-2019-25-1-7-20
(Mi vsgu584)
 

Mathematics

The correctness of a Dirichlet type problem for the degenerate multidimensional hyperbolic-elliptic equations

S. A. Aldashev

Institute of Mathematics and Mathematical Modeling, 125, Pushkin street, Almaty, 050010, Republic of Kazakhstan (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: Multidimensional hyperbolic-elliptic equations describe important physical, astronomical, and geometric processes. It is known that the oscillations of elastic membranes in space according to Hamilton’s prism can be modeled by multidimensional degenerate hyperbolic equations. Assuming that the membrane is in equilibrium in half the bend, from Hamilton’s principle we also obtain degenerate elliptic equations. Consequently, vibrations of elastic membranes in space can be modeled as multidimensional degenerate hyperbolic-elliptic equations. When studying these applications, it is necessary to obtain an explicit representation of the investigated boundary value problems. The author has previously studied the Dirichlet problem for multidimensional hyperbolic-elliptic equations, where the unique solvability of this problem is shown, which essentially depends on the height of the cylindrical domain under consideration. However, the Dirichlet problem in a cylindrical domain for multidimensional degenerate hyperbolic-elliptic equations has not been studied previously. In this paper, the Dirichlet problem is studied for a class of degenerate multidimensional hyperbolic-elliptic equations. Moreover, the existence and uniqueness of the solution depends on the height of the considered cylindrical domain and on the degeneration of the equation. A uniqueness criterion for a regular solution is also obtained.
Keywords: correctness, Dirichlet problem, cylindrical domain, degeneration of Bessel function, criteria.
Received: 15.01.2019
Accepted: 20.02.2019
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: S. A. Aldashev, “The correctness of a Dirichlet type problem for the degenerate multidimensional hyperbolic-elliptic equations”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 25:1 (2019), 7–20
Citation in format AMSBIB
\Bibitem{Ald19}
\by S.~A.~Aldashev
\paper The correctness of a Dirichlet type problem for the degenerate multidimensional hyperbolic-elliptic equations
\jour Vestnik SamU. Estestvenno-Nauchnaya Ser.
\yr 2019
\vol 25
\issue 1
\pages 7--20
\mathnet{http://mi.mathnet.ru/vsgu584}
\crossref{https://doi.org/10.18287/2541-7525-2019-25-1-7-20}
\elib{https://elibrary.ru/item.asp?id=39454580}
Linking options:
  • https://www.mathnet.ru/eng/vsgu584
  • https://www.mathnet.ru/eng/vsgu/v25/i1/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного университета. Естественнонаучная серия
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :62
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024