Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya, 2018, Volume 24, Issue 3, Pages 23–29
DOI: https://doi.org/10.18287/2541-7525-2018-24-3-23-29
(Mi vsgu579)
 

This article is cited in 6 scientific papers (total in 6 papers)

Mathematics

Boundary value problem for the Aller–Lykov moisture transport generalized equation with concentrated heat capacity

M. A. Kerefova, F. M. Nakhushevaa, S. Kh. Gekkievab

a Department of Applied Mathematics and Informatics, Kabardino-Balkarian State University named after H.M. Berbekov, 173, Chernyshevsky Street, Nalchik, 360004, Russian Federation
b Department of Mathematical Modeling of Geophysical Processes, Institute of Applied Mathematics and Automation, Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 2, Balkarova Street, Dolinsk, Nalchik, 360002, Russian Federation
Full-text PDF (233 kB) Citations (6)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The article considers the Aller–Lykov equation with a Riemann–Liouville fractional time derivative, boundary conditions of the third kind and with the concentrated specific heat capacity on the boundary of the domain. Similar conditions arise in the case with a material of a higher thermal conductivity when solving a temperature problem for restricted environment with a heater as a concentrated heat capacity. Analogous conditions also arise in practices for regulating the water-salt regime of soils, when desalination of the upper layer is achieved by draining of a surface of the flooded for a while area. Using energy inequality methods, we obtained an a priori estimate in terms of the Riemann–Liouville fractional derivative, which revealed the uniqueness of the solution to the problem under consideration.
Keywords: Aller's–Lykov equation, fractional derivative, nonlocal problem, moisture transfer generalized equation, concentrated heat capacity, inequalities method, a priori estimate, boundary value problem.
Received: 05.09.2018
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: M. A. Kerefov, F. M. Nakhusheva, S. Kh. Gekkieva, “Boundary value problem for the Aller–Lykov moisture transport generalized equation with concentrated heat capacity”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:3 (2018), 23–29
Citation in format AMSBIB
\Bibitem{KerNakGek18}
\by M.~A.~Kerefov, F.~M.~Nakhusheva, S.~Kh.~Gekkieva
\paper Boundary value problem for the Aller--Lykov moisture transport generalized equation with concentrated heat capacity
\jour Vestnik SamU. Estestvenno-Nauchnaya Ser.
\yr 2018
\vol 24
\issue 3
\pages 23--29
\mathnet{http://mi.mathnet.ru/vsgu579}
\crossref{https://doi.org/10.18287/2541-7525-2018-24-3-23-29}
\elib{https://elibrary.ru/item.asp?id=36731739}
Linking options:
  • https://www.mathnet.ru/eng/vsgu579
  • https://www.mathnet.ru/eng/vsgu/v24/i3/p23
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного университета. Естественнонаучная серия
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024