Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya, 2017, Issue 4, Pages 7–18
DOI: https://doi.org/10.18287/2541-7525-2017-23-4-7-18
(Mi vsgu557)
 

This article is cited in 4 scientific papers (total in 4 papers)

Mathematics

A problem on longitudinal vibration in a short bar with dynamical boundary conditions

A. B. Beylina, L. S. Pulkinab

a Samara State Technical University, 133, Molodogvardeiskaya str., Samara, 443010, Russian Federation
b Samara National Research University, 34, Moskovskoye shosse, 443086, Russian Federation
Full-text PDF (244 kB) Citations (4)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: In this paper, we consider an initial-boundary problem with dynamical nonlocal boundary condition for a pseudohyperbolic fourth-order equation in a rectangular. Dynamical nonlocal boundary condition represents a relation between values of a required solution, its derivatives with respect of spacial variables, second-order derivatives with respect of time-variables and an integral term. This problem may be used as a mathematical model of longitudinal vibration in a thick short bar and illustrates a nonlocal approach to such processes. The main result lies in justification of solvability of this problem. Existence and uniqueness of a generalized solution are proved. The proof is based on the a priori estimates obtained in this paper, Galerkin's procedure and the properties of the Sobolev spaces.
Keywords: pseudohyperbolic equation, dynamical boundary conditions, longitudinal vibration, nonlocal conditions, generalized solution.
Received: 18.10.2017
Bibliographic databases:
Document Type: Article
UDC: 517.95, 624.07
Language: Russian
Citation: A. B. Beylin, L. S. Pulkina, “A problem on longitudinal vibration in a short bar with dynamical boundary conditions”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 2017, no. 4, 7–18
Citation in format AMSBIB
\Bibitem{BeyPul17}
\by A.~B.~Beylin, L.~S.~Pulkina
\paper A problem on longitudinal vibration in a short bar with dynamical boundary conditions
\jour Vestnik SamU. Estestvenno-Nauchnaya Ser.
\yr 2017
\issue 4
\pages 7--18
\mathnet{http://mi.mathnet.ru/vsgu557}
\crossref{https://doi.org/10.18287/2541-7525-2017-23-4-7-18}
\elib{https://elibrary.ru/item.asp?id=32274175}
Linking options:
  • https://www.mathnet.ru/eng/vsgu557
  • https://www.mathnet.ru/eng/vsgu/y2017/i4/p7
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного университета. Естественнонаучная серия
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024