Vestnik SamGU. Estestvenno-Nauchnaya Ser.
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2015, Issue 6(128), Pages 130–134 (Mi vsgu530)  

Mathematics

On asymptotic properties of solutions, defined on the half of axis of one semilinear ODE

I. V. Filimonovaa, T. S. Khachlaevb

a Lomonosov Moscow State University, 1, Leninskie Gory, Moscow, 119991, Russian Federation
b Moscow State Institute of Radio Engineering, Electronics and Automation, 78, Vernadskogo Street, Moscow, 119454, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The paper deals with the solutions of ordinary differential semi-linear equation, the coefficients of which depend on several real parameters. If the coefficient is chosen so that the equation does not contain the first-order derivative of the unknown function, it will be the case of Emden–Fowler equation. Asymptotic behavior of Emden–Fowler equation solutions at infinity is described in the book of Richard Bellman. The equations with the first-order derivative, considered in this work, erase in some problems for elliptic partial differential equations in unbounded domains. The sign of the coefficient in first-order derivative term essentially influences on the description of solutions. Partly the result of this paper can be obtained from the works of I. T. Kiguradze. In present work we use lemmas about the behavior of solutions of the linear equations with a strongly (weakly) increasing potential.
Keywords: ordinary differential equations, nonlinear equations, semilinear equations, Emden — Fowler equation, asymptotic behavior of solutions, positive solutions, existence of solutions, maximum principle.
Received: 04.06.2015
Bibliographic databases:
Document Type: Article
UDC: 517.923
Language: Russian
Citation: I. V. Filimonova, T. S. Khachlaev, “On asymptotic properties of solutions, defined on the half of axis of one semilinear ODE”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2015, no. 6(128), 130–134
Citation in format AMSBIB
\Bibitem{FilKha15}
\by I.~V.~Filimonova, T.~S.~Khachlaev
\paper On asymptotic properties of solutions, defined on the half of axis of one semilinear ODE
\jour Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya
\yr 2015
\issue 6(128)
\pages 130--134
\mathnet{http://mi.mathnet.ru/vsgu530}
\elib{https://elibrary.ru/item.asp?id=24307603}
Linking options:
  • https://www.mathnet.ru/eng/vsgu530
  • https://www.mathnet.ru/eng/vsgu/y2015/i6/p130
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного университета. Естественнонаучная серия
    Statistics & downloads:
    Abstract page:81
    Full-text PDF :32
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024