Vestnik SamGU. Estestvenno-Nauchnaya Ser.
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik SamU. Estestvenno-Nauchnaya Ser.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2014, Issue 3(114), Pages 34–40 (Mi vsgu349)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

Field of invariants of Borelean group of adjoint representation of $GL(n,K)$

K. A. Vyatkina

Samara State University, Samara, 443011, Russian Federation
Full-text PDF (249 kB) Citations (1)
(published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The paper is devoted to invariant theory problems, in particular to the problem of finding generators of invariant fields in an explicit form. The set of generators is given for invariant field of unitriangular group concerning the adjoint representation of $GL(n,K)$ group. Moreover, the set of generators of Borel group for the field of invariants is constructed and their algebraic independence is proved.
Keywords: Lie group, adjoint representation, field of invariant, generators of the field of invariants, Borel group.
Received: 10.04.2014
Revised: 10.04.2014
Document Type: Article
UDC: 519.999
Language: Russian
Citation: K. A. Vyatkina, “Field of invariants of Borelean group of adjoint representation of $GL(n,K)$”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2014, no. 3(114), 34–40
Citation in format AMSBIB
\Bibitem{Vya14}
\by K.~A.~Vyatkina
\paper Field of invariants of Borelean group of adjoint representation of $GL(n,K)$
\jour Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya
\yr 2014
\issue 3(114)
\pages 34--40
\mathnet{http://mi.mathnet.ru/vsgu349}
Linking options:
  • https://www.mathnet.ru/eng/vsgu349
  • https://www.mathnet.ru/eng/vsgu/y2014/i3/p34
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного университета. Естественнонаучная серия
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024