|
Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2009, Issue 8(74), Pages 88–93
(Mi vsgu283)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Mathematics
T-radicals generated by bimodules
E. A. Timoshenko Dept. of General Mathematics, Tomsk State University, Tomsk, 634050, Russia
(published under the terms of the Creative Commons Attribution 4.0 International License)
Abstract:
We prove that for an arbitrary ring $S$ with identity and an arbitrary left module ${_S}F$ there exists an $S$-$S$-bimodule $N$ such that the conditions $A \otimes_S F = 0$ and $A \otimes_S N = 0$ are equivalent. It is shown that it suffices to set $N = F \otimes S$.
Keywords:
module, radical, tensor product, covariant extension, bimodule.
Received: 07.09.2009 Revised: 07.09.2009
Citation:
E. A. Timoshenko, “T-radicals generated by bimodules”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2009, no. 8(74), 88–93
Linking options:
https://www.mathnet.ru/eng/vsgu283 https://www.mathnet.ru/eng/vsgu/y2009/i8/p88
|
Statistics & downloads: |
Abstract page: | 153 | Full-text PDF : | 45 | References: | 31 | First page: | 1 |
|