|
Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2009, Issue 8(74), Pages 15–27
(Mi vsgu276)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Mathematics
The problem with periodicity conditions for the equations of mixed type with characteristic degeneracy
I. P. Egorova Dept. of Higher Mathematics, Samara State Architectural and Building University, Samara, 443011, Russia
(published under the terms of the Creative Commons Attribution 4.0 International License)
Abstract:
For mixed type equation $$ Lu\equiv u_{xx}+sgny\cdot |y|^m u_{yy}=0,\: 0<m<1\nonumber $$ \noindent in a rectangular domain $\{(x,y)|\quad 0<x<1,-\alpha<y<\beta\}$, where $m,\alpha,\beta$ – defined positive numbers, theorems of existence and uniqueness of the problem solvability with boundary solutions $u(0,y)=u(1,y)$, $u_x(0,y)=u_x(1,y)$, $-\alpha\leq y\leq \beta$; $u(x,\beta)=f(x)$, $u(x,-\alpha)=g(x),$ $0\le x\le 1$ are proved by the method of spectral analysis.
Keywords:
eigenfunctions, spectral analysis.
Received: 03.09.2009 Revised: 03.09.2009
Citation:
I. P. Egorova, “The problem with periodicity conditions for the equations of mixed type with characteristic degeneracy”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2009, no. 8(74), 15–27
Linking options:
https://www.mathnet.ru/eng/vsgu276 https://www.mathnet.ru/eng/vsgu/y2009/i8/p15
|
Statistics & downloads: |
Abstract page: | 121 | Full-text PDF : | 42 | References: | 29 | First page: | 1 |
|