Abstract:
In this paper we study an inverse problem with an integral overdetermination condition for a hyperbolic equation with an unknown coefficient in equation. The existence and uniqueness of a solution is proved with the help of an a-priory estimate and Galyorkin procedure.
Keywords:
inverse problem, integral condition, solvability.
Original article submitted 25/IV/2011 revision submitted – 05/V/2011
Citation:
N. V. Beylina, “On solvability of a inverse problem for hyperbolic equation with an integral overdetermination condition”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(23) (2011), 34–39
\Bibitem{Bey11}
\by N.~V.~Beylina
\paper On solvability of a inverse problem for hyperbolic equation with an integral overdetermination condition
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2011
\vol 2(23)
\pages 34--39
\mathnet{http://mi.mathnet.ru/vsgtu957}
\crossref{https://doi.org/10.14498/vsgtu957}
Linking options:
https://www.mathnet.ru/eng/vsgtu957
https://www.mathnet.ru/eng/vsgtu/v123/p34
This publication is cited in the following 5 articles:
R. K. Kataev, A. E. Minin, D. A. Zhurova, L. M. Minina, E. A. Frolova, “Aquatic bioresources and commercial fisheries features in the lower reaches of the Oka river”, jour, 26:1 (2025), 33
Protsakh N., “Inverse Problem For Higher Order Ultraparabolic Equation With Unknown Minor Coefficient and Right-Hand Side Function”, Miskolc Math. Notes, 21:1 (2020), 335–350
N. P. Protsakh, “Inverse Problem for a Weakly Nonlinear Ultraparabolic Equation with Three Unknown Functions of Different Arguments on the Right-Hand Side”, J Math Sci, 217:4 (2016), 476
N. P. Protsakh, “Inverse Problem for an Ultraparabolic Equation with Unknown Function of the Space Variable on the Right-Hand Side”, J Math Sci, 203:1 (2014), 16