Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2011, Issue 1(22), Pages 53–67
DOI: https://doi.org/10.14498/vsgtu936
(Mi vsgtu936)
 

Procedings of the 2nd International Conference "Mathematical Physics and its Applications"
Mathematical Physics

The estimates of the solution of the Dirichlet problem with boundary function from $L_p$ for a second-order elliptic equation

A. K. Gushchin

Dept. of Mathematical Physics, Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We study the solvability of the Dirichlet problem for a second-order elliptic equation with measurable and bounded coefficients. Assuming that coefficients of equation are Dini-continued on the boundary, it is established that there is the unique solution of the Dirichlet problem with boundary function from $L_p$, $p>1$. We prove the estimate of the analogue of area integral.
Keywords: elliptic equation, Dirichlet problem, functional space.
Original article submitted 20/XII/2010
revision submitted – 27/III/2011
Bibliographic databases:
Document Type: Article
UDC: 517.956.2
MSC: Primary 35D05; Secondary 35J25, 35B30, 35R05, 35B45
Language: Russian
Citation: A. K. Gushchin, “The estimates of the solution of the Dirichlet problem with boundary function from $L_p$ for a second-order elliptic equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(22) (2011), 53–67
Citation in format AMSBIB
\Bibitem{Gus11}
\by A.~K.~Gushchin
\paper The estimates of the solution of the Dirichlet problem with boundary function from $L_p$ for a~second-order elliptic equation
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2011
\vol 1(22)
\pages 53--67
\mathnet{http://mi.mathnet.ru/vsgtu936}
\crossref{https://doi.org/10.14498/vsgtu936}
\elib{https://elibrary.ru/item.asp?id=16387159}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu936
  • https://www.mathnet.ru/eng/vsgtu/v122/p53
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:631
    Full-text PDF :252
    References:95
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024