Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2011, Issue 1(22), Pages 255–268
DOI: https://doi.org/10.14498/vsgtu932
(Mi vsgtu932)
 

This article is cited in 21 scientific papers (total in 21 papers)

Procedings of the 2nd International Conference "Mathematical Physics and its Applications"
Mechanics

Rheological model of viscoelastic body with memory and differential equations of fractional oscillator

E. N. Ogorodnikov, V. P. Radchenko, N. S. Yashagin

Dept. of Applied Mathematics and Computer Science, Samara State Technical University, Samara (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: One-dimensional generalized rheologic model of viscoelastic body with Riemann-Liouville derivatives is considered. Instead of derivatives of order $\alpha>1$ there are employed in defining relations derivatives of order $0<\alpha<1$ from integer derivatives. It’s shown, that the differential equation for the deformation with given dependence of the tension from the time with classical initial conditions of Cauchy are reduced to the Volterra integral equations. Some variants of the generalized fractional Voigt’s model are considered. Explicit solutions for corresponding differential equation for the deformation are found out. It’s indicated, that these solutions coincide with the classical ones when the fractional parameter vanishes.
Keywords: rheological model of viscoelastic body, differential equations with fractional Riemann–Liouville derivatives Mittag–Leffler type special functions.
Original article submitted 12/XII/2010
revision submitted – 17/II/2011
Bibliographic databases:
Document Type: Article
UDC: 539.313:517.968.72
MSC: Primary 74D10; Secondary 26A33
Language: Russian
Citation: E. N. Ogorodnikov, V. P. Radchenko, N. S. Yashagin, “Rheological model of viscoelastic body with memory and differential equations of fractional oscillator”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(22) (2011), 255–268
Citation in format AMSBIB
\Bibitem{OgoRadYas11}
\by E.~N.~Ogorodnikov, V.~P.~Radchenko, N.~S.~Yashagin
\paper Rheological model of viscoelastic body with memory and differential equations of fractional oscillator
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2011
\vol 1(22)
\pages 255--268
\mathnet{http://mi.mathnet.ru/vsgtu932}
\crossref{https://doi.org/10.14498/vsgtu932}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu932
  • https://www.mathnet.ru/eng/vsgtu/v122/p255
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:1453
    Full-text PDF :462
    References:107
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024