Abstract:
One of modern approaches to a problem of the coordination of classical mechanics and the statistical physics — the functional mechanics is considered. Deviations from classical trajectories are calculated and evolution of the moments of distribution function is constructed. The relation between the received results and absence of paradox of Poincaré–Zermelo in the functional mechanics is discussed. Destruction of periodicity of movement in the functional mechanics is shown and decrement of attenuation for classical invariants of movement on a trajectory of functional mechanical averages is calculated.
Citation:
A. I. Mikhailov, “The functional mechanics: Evolution of the moments of distribution function and the Poincaré recurrence theorem”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(22) (2011), 124–133; P-Adic Numbers, Ultrametric Analysis, and Applications, 3:3 (2011), 205–211
\Bibitem{Mik11}
\by A.~I.~Mikhailov
\paper The functional mechanics: Evolution of the moments of distribution function and the Poincar\'e recurrence theorem
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2011
\vol 1(22)
\pages 124--133
\mathnet{http://mi.mathnet.ru/vsgtu897}
\crossref{https://doi.org/10.14498/vsgtu897}
\elib{https://elibrary.ru/item.asp?id=16387168}
\transl
\jour P-Adic Numbers, Ultrametric Analysis, and Applications
\yr 2011
\vol 3
\issue 3
\pages 205--211
\crossref{https://doi.org/10.1134/S2070046611030046}
Linking options:
https://www.mathnet.ru/eng/vsgtu897
https://www.mathnet.ru/eng/vsgtu/v122/p124
This publication is cited in the following 9 articles:
Anatolij K. Prykarpatski, “Quantum Current Algebra in Action: Linearization, Integrability of Classical and Factorization of Quantum Nonlinear Dynamical Systems”, Universe, 8:5 (2022), 288
Ivankiv L.I., Prykarpatsky Ya.A., Samoilenko V.H., Prykarpatski A.K., “Quantum Current Algebra Symmetry and Description of Boltzmann Type Kinetic Equations in Statistical Physics”, Symmetry-Basel, 13:8 (2021), 1452
Prykarpatsky Yarema A, Kycia Radoslaw, Prykarpatski Anatolij K, “On the Bogolubov's chain of kinetic equations, the invariant subspaces and the corresponding Dirac type reduction”, Ann Math Phys, 2021, 074
A. I. Mikhailov, “O granitsakh reduktsii”, Vestnik Moskovskogo universiteta. Seriya 7: Filosofiya, 2017, no. 5, 61–76
A. S. Trushechkin, “Microscopic solutions of kinetic equations and the irreversibility problem”, Proc. Steklov Inst. Math., 285 (2014), 251–274
A. S. Trushechkin, “Microscopic and soliton-like solutions of the Boltzmann–Enskog and generalized Enskog equations for elastic and inelastic hard spheres”, Kinet. Relat. Models, 7:4 (2014), 755–778
A. I. Mikhailov, “Infinitnoe dvizhenie v klassicheskoi funktsionalnoi mekhanike”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(30) (2013), 222–232